DOI QR코드

DOI QR Code

A Study on Human Recognition Experiments with Handwritten Digit for Machine Recognition of Handwritten Digit

필기 숫자의 기계 인식을 위한 인간의 필기 숫자 인식 실험에 대한 고찰

  • 윤성수 (이화여자대학교 공과대학 컴퓨터학과) ;
  • 정현숙 (조선대학교 컴퓨터공학부) ;
  • 이광오 (영남대학교 문과대학 심리학과) ;
  • 이일병 (연세대학교 공과대학 컴퓨터과학과) ;
  • 이상호 (이화여자대학교 공과대학 컴퓨터학과)
  • Published : 2008.06.25

Abstract

So far there have been many researches on machine-based recognition of handwritten digit. But we have not yet attained the level of performance that can be satisfactory to men. The dissatisfaction with the performance of machine comes from not only the low accuracy of recognition but also the dissimilarity of the recognition results between man and machine. To reduce the difference of machine from man we first made an experiment with the human recognition of handwritten digits and then inquiry into the way of the human recognition that makes the results of men different from that of machine. We found out the attributes that play an important role in the human recognition process through the analysis of the experimental results like uni- and bi-directional confused pairs of digits, several ones unmixed up with another and the redundancy of mis-recognition, and proposed the approach direction to be able to improve the accuracy of the machine-based recognition, and furthermore the similarity in the recognition results of men and machine on the basis of the found facts above.

지금까지 기계 기반의 필기 숫자 인식 방법에 대한 많은 연구가 진행되어 왔다. 그러나 여전히 인간이 만족할 만한 인식 성능을 이루지는 못하였다. 이러한 배경에는 단순히 인식률을 나타내는 수치가 낮은 것도 한 부분을 차지 하지만, 인간이 수긍할 수 없는 오류 성향도 중요한 부분을 차지한다. 그러므로 본 논문에서는 실제 인간의 숫자 인식이 어떻게 이루어지는지를 확인하는 실험을 먼저 수행하고, 이것에 근거하여 기계 인식을 위하여 필요한 요소들이 무엇인지를 고찰하도록 하였다. 실험결과 한쪽 또는 양쪽 방향으로 혼동하는 숫자 쌍, 전혀 혼동하지 않는 숫자 쌍, 오류 발생의 중복성 등의 결과를 비교 분석하여 인간이 인식과정에서 중요하게 고려하는 특징들을 찾아냈고, 그 결과에 근거하여 기계 인식에 있어서 더 높은 인식 성능을 발휘할 수 있고, 더 나아가 인간적인 측면에서 보다 더 신뢰할 수 있는 인식결과를 이끌어 낼 수 있는 접근 방향에 대하여 제시하였다.

Keywords

References

  1. 이찬희, 정순호, "획의 방향 코드 조합에 의한 오프라인 필기체 숫자 인식," 한국정보과학회논문지: 소프트웨어및응용, 제31권 12호, pp.1581-1590, 2004
  2. 이진선, "유전 알고리즘을 이용한 특징 결합과 선택," 한국콘텐츠학회논문지, 제5권 5호, pp.152-158, 2005
  3. Wierer, J., Boston, N., "A Handwritten Digit Recognition Algorithm using Two-Dimensional Hidden Markov Models for Feature Extraction," Proc. of ICASSP'07, vol 2, pp. 505-508, 2007
  4. Garg, Naresh Kumar, Jindal, Simpel, "An Efficient Feature Set for Handwritten Digit Recognition," Proc. of ADCOM'07, pp. 540-545, 2007
  5. Javed, I., Ayyaz, M.N., Mehmood, W., "Efficient Training Data Reduction for SVM based Handwritten Digits Recognition," Proc. of ICEE'07, pp. 1-4, 2007
  6. 박중소, 김경민, "SVM 분류기를 이용한 필기체 숫자인식," 한국신호처리시스템학회논문지, 제8권 3호, pp.136-142, 2007
  7. K. Takahashi, D. Nishiwaki, "A class-modular GLVQ ensemble with outlier learning for handwritten digit recognition," Proc. of ICDAR'03, vol.1, pp. 268-272, 2003
  8. 김도현, 김광백, 조재현, 차의영, "인간 시각의 선택적 지각 능력에 기반한 패턴 분류," 한국해양정보통신학회논문지, 제10권 2호, pp. 398-405, 2006
  9. 조성목, 조옥래, "인간시각 인식특성을 지닌 효율적 비선형 스케치 특징추출 필터," 한국컴퓨터정보학회논문지, 제11권 1호, pp. 139-145, 2006
  10. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied to document recognition." Proc. of the IEEE, vol.86, no.11, pp. 2278-2324, 1998 https://doi.org/10.1109/5.726791

Cited by

  1. Design of Digit Recognition System Realized with the Aid of Fuzzy RBFNNs and Incremental-PCA vol.26, pp.1, 2016, https://doi.org/10.5391/JKIIS.2016.26.1.056