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PRICING FLOATING-STRIKE LOOKBACK OPTIONS WITH
FLEXIBLE MONITORING PERIODS

Hangsuck Lee!

ABSTRACT

A floating-strike lookback call option gives the holder the right to buy at the lowest
price of the underlying asset. Similarly, a floating-strike lookback put option gives the
holder the right to sell at the highest price. This paper will present explicit pricing
formulas for these floating-strike lookback options with flexible monitoring periods.
The monitoring periods of these options start at an arbitrary date and end at another
arbitrary date before maturity. Sections 3 and 4 assume that the underlying assets
pay no dividends. In contrast, Section 5 will derive explicit pricing formulas for these
options when their underlying asset pays dividends continuously at a rate proportional

to its price.
Keywords: Lookback option, floating strike, Brownian motion.

1. Introduction

Lookback options are path-dependent contingent claims whose payoffs depend on the
maximum(or minimum) of the underlying asset price over a certain period. A floating-
strike lookback call option gives the holder the right to buy at the lowest price of the
underlying asset. Similarly, a floating-strike lookback put option gives the holder the right
to sell at the highest price. Goldman et al. (1979) derived explicit pricing formulas for
floating-strike lookback options where the highest(or lowest) price of the underlying asset is
attained during the whole life of the options. Since the payoffs of these options are greater
than or equal to those of the corresponding plain-vanilla options, these options are more
expengsive. This makes the floating-strike lookback options less attractive to investors. Conze
and Viswanathan (1991) derived explicit pricing formulas for partial floating-strike lookback
options that give the holder the right to buy(or sell) at some percentage times the lowest(or
highest) price. These options are less expensive than the floating-strike lookback options
discussed by Goldman, et al. (1979).
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Heynen and Kat (1994) suggest a way of reducing the price of these partial floating-strike
lookback options while preserving some of their good qualities. The solution, they say, lies in
partial floating-strike lookback options whose monitoring period is not the entire life of the
options but ends at an arbitrary date before the expiration date. If some investors believe
that the underlying asset will increase(or decrease) between the beginning of the contract
and the arbitrary date, these options will be very attractive.

However, those who have a specific view of the asset movement in a certain interval
of the option life may be more interested in partial floating-strike lookback options whose
monitoring period starts at an arbitrary date and ends at another arbitrary date before
maturity. If investors choose the monitoring period during which the underlying asset is
believed to increase or decrease, they may not worry about the market entry problem.
This paper will present explicit pricing formulas for these generalized options with flexible
monitoring periods.

This paper is organized as follows. Section 3 and 4 will present explicit pricing formulas
for the floating-strike lookback put and call options, respectively. Section 3 will show a
duality relationship between the two options. In addition, Section 5 will derive explicit
pricing formulas for these options when their underlying asset pays dividends continuously
at a rate proportional to its price. These pricing formulas are generalization of the pricing
formulas in Sections 3 and 4.

2. Esscher Transforms and Some Probability Distributions

This section describes the method of Esscher transforms developed by Gerber and Shiu
(1994, 1996). Let S(t) denote the time-t price of an equity. Assume that the equity is
constructed with all dividends reinvested. Assume that for ¢ > 0,

S(t) = S(0)eX ),

where {X(¢)} is a Brownian motion with drift ¢ and diffusion coefficient ¢ and X (0) = 0.
Thus the Brownian motion is a stochastic process with independent and stationary incre-
ments and X (¢) has a normal distribution with mean ut and variance o?t.

For a nonzero real number A, the moment generating function of X (t), E[e"X(!)], exists
for all ¢ > 0, because {X(¢)} is the Brownian motion as described above. The stochastic
Process

{th(t)E[th(l)]—t}

is a positive martingale which can be used to define a new probability measure (). We call
() the Esscher measure of parameter A.
For a random variable Y that is a real-valued function of {X(¢), 0 < t < T}, the
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expectation of Y under the new probability measure ) is calculated as

o X(T)
Y

E
E [th(l)]T

(2.1)

which will be denoted by E[Y'; h]. The risk-neutral Esscher measure is the Esscher measure

of parameter h = h* under which the process {¢~"*S(t)} is a martingale. Thus

E [e_"tS(t);h*] = 5(0). (2.2)
Therefore, h* is the solution of
p+h*o? =1 — 9; (2.3)
For ¢ > 0, the moment generating function of X (¢) under the Esscher measure of param-
eter A 1s
E [er(t); h] = exp {(,u + ho?)tz + 02;;52 } , (2.4)

which implies that X(¢) has a normal distribution with mean (¢ + ho?)t and variance
0%t under the Esscher measure. It can be shown that the process {X(¢)} under the Esscher
measure has independent and stationary increments. Thus, the process is a Brownian motion
with drift u + ho? and diffusion coefficient o under the Esscher measure of parameter .

Now, let us consider a special case of the factorization formula (Gerber and Shiu, 1994,
p.177; 1996, p.188). For a random variable Y that is a real-valued function of {X(¢), 0
<t<T}

E [eCX(T)Y; b = E {e“x(T); h] E[Y:h+d. (2.5)

In particular, for an event B whose condition is determined by {X(¢), 0 <t < T}, the

formula (2.5) can be expressed as follows:
E [eCX(T)I(B); h} - F [e‘fX(T); h} Pr(B;h + ), (2.6)

where I(-) denotes the indicator function and Pr(B; h) denotes the probability of the event,
B under the Esscher measure of parameter h.

Now, let us discuss distributions and calculate some expectations to derive the joint
distribution function of random variables X (7T') and Al(s, t). For 0 < s <, let

M(s,t) = max{X(7), s <7 <t} (2.7a)

be the maximum of the Brownian motion between time s and time ¢{. For simplicity, let
M(t) = M(0, t). In addition, let,

m(s,t) = min{X (1), s < 7 < t}. (2.7b)
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For simplicity, let m(t) = m(0, t).
Now, let Z = (Z,, Z», Z3) have a standard trivariate normal distribution with correlation

coefficients Corr(Z;, Z;) = pi; (i, j = 1, 2, 3). The distribution function of the random vector
Z is

(1)3(0’7 ba C; P12, P13, 923) — PI'(Zl < a, Z? < ba ZS < C) (288,)
and

(I)Q(CL, b; plg) = PI‘(Zl < a, ZQ < b) (28b)

Let us calculate the expectations necessary for deriving the proposed lookback options.
Let random variable X be normal with mean p and variance ¢?. We assume that a, b, ¢, 6
and @, are real numbers, g; > 0 and o9 > 0. Then,

X +b 0, X +b
E[thI(X<a)¢>2< T , Ll ;p)jl
01 d9

3 ) s

= eh“+éh202(]:)3 (a_uh b+9ﬂ'h c—l_g*uh‘ 92;—9*179*) ? (29)
g K Y Y K x

where x denotes \/0202 + 02, k, is \/0202 + 02, p, is (po109 +00,0%)/(kk,) and p;, denotes

u + ho?. In addition, we obtain another expectation,

*X
E [thI(X > a)®, (9X+b, ¢ +C;p)}
01 09

)

_ ehu+éhzgz¢3 (_a-—uh b-I-QHJh’ C—|—9*ﬂh;9€’9*i’p*> ’ (2.10)
%) K K K Koy

In the particular case that ¢ approaches infinity, it follows from (2.9) and (2.10) that

60X + b\ —pn b+
o1 | o K K
X4\ L2 2 _
E [thI(X > a)® (9 T b) = ehutih? g, (—a Hi Dt 9“"’;95) L (212)
o1 | o K K

3. Floating-Strike Lookback Put Option

The proposed floating-strike lookback put option gives the holder the right to sell at
some percentage of the highest price of the underlying asset attained in a certain interval
of the option life. The floating-strike price is the greater of either some percentage times
the maximum asset price or a minimum guaranteed strike price. The minimum guaranteed
strike price might be interpreted as the maximum of the underlying asset price attained in
the past. |
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Let us take a close look at the payoff of the floating-strike lookback put option. Assume
that A is the percentage over the highest price and L is used for the minimum guaranteed
strike price. The payoff of this option is as follows:

S(O) (/\emax(h'f(s,t),L) . EX(T))+ . (31)

Heynen and Kat (1994) assume that the percentage A is less than or equal to one and
greater than zero and that L is nonnegative. But the payoff (3.1) does not assume the
magnitude of A and the sign of L.

To simplify writing, we define all expectations in this and next sections as taken with
respect to the risk-neutral measure. In other words, under this measure, the underlying
stochastic process {X(7), 7 > 0} is a Brownian motion with drift r— ¢2/2 and diffusion
coefficient ¢. By the fundamental theorem of asset pricing, the time-0 value of the payoft
(3.1) is

S(o)e—TTE l:(/\emax(ﬂf(s.i),L) L eX(T)) ] , (32)
4

whose discounted expectation is a generalization of the partial floating-strike lookback put
option (Heynen and Kat, 1997). Calculating this discounted expectation (3.2) seems to
require much complicated and tedious integration, but conditional expectations, if obtained
easily, can simplify and reduce many calculations. Lee (2003) calculated this discounted
expectation (3.2). For a proof, see Lee (2003).

Therefore, the time-0 value of the floating-strike lookback put option with monitoring

period from time s to time ¢,

S(0)e”"TE {(Aemaxm”-‘”% Ly _ eX(T)) } = 5(0){®(g1)A + B}
_|_
=: V}oui(S(0), A, L,7,0), (3.3)

where for i = 1 and 2, g; denotes [—L + {r + (=1)*"11/20°}s]/(o+/s). Here,

log A
Ai=—Pk)P [ —
(1) ( el—i_U\/Tht)

o r 2 log A log A T —t¢
+ A202+1g—@2 (hl + Oﬁ —, —€1 — 08 P — )
o S :

2r

2 . 2r\/t — : 2T — log A t—
- )\g—eﬁr(T_s)@Q (kl - r q,hl - r i + 5 ) ‘3)
T ,

2 log A
+ A (1 + 5‘2'7) e " Tk )® (—82 + ——E )
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log A t—s
— Py (—hl + 5 , —k1; ) ; (3.4)

where for i+ = 1 and 2, h; is [{r + (=1)*"11/20%}(T — s)|/(6cv/T — s) and k; is [{r +
(—1)11/20%}(t — s)]/(0v/t — s). In addition,

B:=—0, (_glafl§ -\/g) ¢ (“81 + J\l})f?i—t)
+A2;2+1g_i@3 (d1_|_(170\g/%,——el 0\1/0;—— —g1; — \/1*——_\/% )
_Aé__z_e-rT 2 2L@3(f1 27;[ dl—QT;/T-I-LOj%,—m-I-QTf;\/%71—\/;_\/‘;:)
+)‘(1+2i) ~r(T~t+3) g, ( —g1, f1; — \/E)CI)(-—eg-l— \l;)jg)\ft)
+xe "Teld, ( —dg + log)\ _fZ: 92,\/7 \/7\/‘)
_@3( lo /\ —f1, 91,\/7\/-[) (3:5)

where for ¢ = 1 and 2, d; denotes [-L + {r + (=1)""11/202}T)/(aV/T), e; is [{r +
(=1)"11/20%}(T — t)]/(o/T —t) and f; is [-L + {r + (=1)""11/20%}t]/(cV/1).

4. Floating-Strike Lookback Call Option

The proposed floating-strike lookback call option gives the holder the right to buy at
some percentage of the lowest price of the underlying asset attained in a certain interval of
the option life. The floating-strike price is the smaller of either some percentage times the
minimum asset price and a maximum guaranteed strike price. The maximum guaranteed
strike price might be interpreted as the minimum underlying asset price attained in the
past. This section will derive an explicit pricing formula for the floating-strike lookback call
option whose monitoring period starts at an arbitrary date and ends at another arbitrary
date before maturity.

Let us take a close look at the payoff of the floating-strike lookback call option. Assume
that X is some percentage and L is used for the maximum guaranteed strike price that can
be interpreted as the highest asset price in a period of the past. The payoff of this option is

S(0) (eX(T) — /\emi“(m(s’t)’l’)) . (4.1)
,+_



Pricing Floating-Strike Lookback Options with Flexible Monitoring Periods 491

By the fundamental theorem of asset pricing, the time-0 value of the payoff is
S(0)e " "E [(eX(T) = Aemin(m(sim) ] . (4.2)
+

Applying (2.11), (2.12) and (6.4) of Lee (2003), it can be shown that the time-0 value of the
partial floating-strike lookback option call is

T [ !(eX(T) _ )\emin(m(t),L)) ]
+

__ { ~V(fi)¥ (—61 + ml;%>

. 2 log A log A t
FECE RSP R - SR U2 S S
2 S\ oV T 1 ovT —t T
- )\U—Qe“TTfDQ:?L\IJQ fi— 2rvt dy — VT + log A /1
2r ‘ o o ovT' VT

o2 log A
Z_ ) o (T=t) e
+)\(1+2T)6’ \I/(fl)\p( 62—|—Cr I—T—t)

. log A t log A t
+ de TTelw, | —d, + c—fair) = | =Wy | —dy + —fud =g 4.3
e 2( 2 O‘ﬁ fZ T) 2( 1 O'ﬁ fl T ( )

where U(x) := ®(—x) and VUy(x, y; p) := P2(—2, —y; p).
The time-0 price (4.2) can be expressed in the form of iterated expectations as follows:

C-—?‘TE l:()X(.s)E |:(6X(T)*"X(S) _ /\Cmin(m(s,t)—X(S)wL*X(S))) |X(S):H ’ (44)
+

which can be decomposed into the sum of two terms,

e TS E [(:’X(S)I (X(S) <L) e—T(T—S)E [(E,’X(T)_X(S) _ ,\em(s,t)*X(S))
4+

o]

E |:6X(3)[ (X(é) > L) CHT(T_S)E [(exm_X(.q)_)\emin(m(.mt)—X(s).L—X(S))) lX(S)] ) (45)

+

First, let us consider the first term of (4.5). Applying the fact that the random vector
(m(s,t) = X(s). X(T) — X(s)) is independent of X(s) and has the same distribution as the
random vector (m(t — s), X(T — s)), we see that the first term of (4.5) can be the product

of two discounted expectations
e " E[eX (X (s) < L))e T T E[(eX(T75) _ \emt=5)), ], (4.6)
Applying the factorization formula (2.6), we see that the first discounted expectation of (4.6)
is
e T Ele*OI(X(s) < L)] = e " E[eX®Pr(X(s) < L; 1)
= T(g1). (4.7)
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From formula (4.5) with L =0, T =T — s and t =t — s, the second discounted expectation
of (4.6) is

e—-r(T——s)E I:(eX(T—.S) . )\em(t—s))+]

0% (T 2rv/t — s 2ry/T — s log A t—s
— A —¢€ Wy | k1 — yhy — 3
2r o o) ovI —s V1T —s
2 log A
A1+ ~rT=0y(k lIJ(—e + )
(102 )emratn (- 222
(T — log A t—s
+ e TG, | —h ,—ko;
€ 2( 2t T T—s)
log A t—s
— Wy | —hy + , —k1; : 4.8
2( ' oVl — s ' T“S)} (4.8)

Let us consider the second term of (4.5). It follows from the partial lookback option
formula (4.5) with L =L — X(s), T =T — s and t =t — s that the discounted conditional
expectation on the second term of (4.5) is

o~ (T—3) | [(BX(T)_X(S) . Aemin(m(s,t)-—X(S),L—X(s))) [X(s)]
+
log A
=—<¢ —U(K\)V | —e +
{ K e+ )
" 107 log A log A T —1t
+ M2t g, [ Dy + ,—€1 — ;—
2r 2( : ovT — s L oVT —t T—s
2r o ’ o/ T — s "VT —s
o* log A
A1+ — ) e Ty (R fo(— -+ )
( 2"')8 ) ” oV —1t
log A t—s
1+ —7r(T—s5) L—X(s)q; — D, + ,—F;
’ ’ T T evT=t VT s
log A t—s
- Wy | =Dy + , —Fy; : 4.9
(o i niY) | 4

where for 4+ = 1 and 2, F; denotes [X(s) — L + {r + (=1)*"11/20%}{t — 5)]/(0+/t — s) and
D;is [X(s) — L+ {r + (=1)""11/20*HT - 5)]/(c/T — s). Applying equations (2.10) and
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(2.12), we can obtain the following formulas.

60X +b 0.X
E [thI(X > a)Wqy ( il ” +C;p)]

01 092
ehﬂ+éh202qjg(a"“h b= Opn ¢ beltn, —9— 9,2 ) (4.10)
g K [ ﬁ',*
and
OX + b 2 —un b
E [e’lXI(X > a)\IJ( il )] = ehutiitoly (a i b+ 0pn. _po ) (4.11)
o1 o K K

where Us(x, y, 2: p12, P13, P23) = Ps(—x, —y, —z; p12, P13, p23). Thus, the second term
of (4.5) is the discounted expectation of eX*)I(X(s) > L) times (4.9). In other words,
the expectation can be decomposed into the sum of six terms, which are expectations of
eX(5)[(X(s) > L) times functions of the random variable X (s) from each term of (4.9).
Applying equation (4.10) or equation (4.11} to the six expectations, the second term of (4.5)

becomes

— { — Wy (—91‘1’1;—\/‘5) v (—Pl + _U\l;)jgji)

+)\20r2+lg—:11’3 (d1 (lfo\g/)i —e1 — % —9g1- “\/——‘— —\f )
_)\_527_?206—1-7“626"21,\1}3(1 27;/ di — 27‘;/T+Log;’_91+2r;/§;\/%7«—\/?“\/;)
2o B
+,\e_rTeL\Il;s( }*(EA , —f2. — g2 x/i \/‘ \/7)

— <_d1 :)ji R \f\/ \/)} (4.12)

To calculate the time-0 value of the Hoating-strike lookback call option, the discounted

expectation (4.2) is decomposed into the sum of the two discounted expectations of (4.5).
The first discounted expectation is the product of (4.7) and (4.8) and the second discounted
expectation is (4.12). Therefore, adding the two discounted expectations, we have the time-0
value of the floating-strike lookback call option with the monitoring period from time s to

time ¢,

S(O)e—v-TE {r(eX(T) . )\emin(m(s.f). L))+j] == S(O){\If(gl)(48) -+ (412)}

=: Viiai(S(0). A, L, 7, 0). (4.13)
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Let us discuss a duality relationship between the floating-strike call and put options. If
we take a close look at the two pricing formulas (3.3) and (4.13), we can observe that the
call option formula (4.13) is —1 times the put option formula (3.3) with its components ®,
®, and P53 replaced by ¥, ¥, and W3, respectively.

5. Continuous Constant-Yield Dividend

The previous sections have derived the explicit pricing formulas for the floating-strike
lookback options whose underlying asset pays no dividends. The pricing formulas in Sections
3 and 4 can be extended to the case where the underlying asset pays dividends continuously
at a rate proportional to its price. This section will derive explicit pricing formulas for this
case.

Let S(t) denote the time-t price of an underlying asset. Assume that ¢ is the constant,
nonnegative dividend yield rate such that the asset pays dividends 65(¢)dt between time ¢
and time ¢t + dt. The risk-neutral measure is the Esscher measure of parameter h = h** with
respect to which the process {e~(""9tS(¢)} is a martingale. Therefore, h** is the solution

of

0.2

p—i—h**a‘?:r——cS——?. (5.1)

Note that the process {X(t)} is a Brownian motion with drift r—d—c?/2 and diffusion

coefficient o under the risk-neutral measure. For further discussion, see Section 9 of Gerber
and Shiu (1996).

By the fundamental theorem of asset pricing, the time-0 values of the payoffs (4.1) and

(3.1) are

S(O)B—TTE l:()\emax(M(s,t),L) . eX(T)) ;h**:| (52)
4+
and

S(O)e"—rTE |:(6X(T) . /\emin(m(s,t),L))_}_ : h**] , (53)

respectively, which are the same as the expectations (4.2) and (3.2) except that the under-
lying stochastic process is a Brownian motion with drift r—§—0c?2/2 and diffusion coefficient

o. The discounting factor e~"7 in the expectations (5.2) and (5.3) can be decomposed into

T and e~ ("=9)T_ Thus we can see that the expectations of (5.2)

the product of two terms e~
and (5.3) times the discounting factor e~ ("=%T are the pricing formulas (4.2) and (3.2) with
r equal to r— J. Therefore, the time-0 values of the floating-strike lookback call and put

options are

e TV (S(0),\, L,m — 6,0) (5.4)
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and
e~ TVE (S(0),\, L,r — 6,0) (5.5)

respectively.
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