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Asymptotic Analysis on Service Differentiation with Customer
Arrival Information®

Ki-Seok Choi**

m Abstract =

An interesting problem in capacitated supply chains is how to guarantee customer service levels with limited
resources. One of the common approaches to solve the problem is differentiating service depending on customer
classes. High-priority customers receive a better service at the cost of low-priority customers’ service level. One of
common criteria to determine a customer's priority in practice is whether he has made a reservation before arrival
or not. Customers with a reservation usually receive service based on the time the reservation was made. We examine
the effect this advance information of customer arrival has on customer service levels. We show the trade-offs between
the leadtime and other system characteristics such as the proportion of high-priority customers, when the service
level is high. We also suggest how to differentiate service using the asymptotic ratio of the service levels for both
types of customers.

Keyword : Service Level, Service Differentiation, Customer Arrival Information, Asymptotic
Analysis, Priority Queue

1. Introduction prove his service quality by increasing capacity
or reducing service time variance. With a given

In order to provide the same level of service capacity limit, the service provider sacrifices the
to all customers, a service provider needs to im- system utilization to improve customer service
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level. This can be easily demonstrated by a sim-
ple example. Suppose the service provider 1s
committed to his customers that the probability
a customer order 1s delivered within a target
leadtime %, is at least (1—p)x100%. This service
provider's customer service level is specified by
(¢, ) and this type of customer service level
measure 1s called the fill rate, defined as the pro-
portion of customers whose service request have
been satisfied within a certain amount of time.
Assumed that customer orders arrive according
to a Poisson process with rate A, the time to
process one order has exponential distribution
with rate u, and the customer orders are proc-
essed one at a time in a first-in—first-out man-
ner, the example is represented by an M/ M/1
queue. The total time in the system & has a
steady-state distribution given by

Pr{iR=t)=1—e =3t for t=0.

When p=1, the target leadtime is at least

_ —logp
I=p

Lo

where p=X/p=X 1s the system utilization. Once
the customer service level is decided, it deter-
mines the system utilization; » =1+(log8)/t,. Th-
us, it 1s impossible to improve customer service
level and system utilization at the same time in
this case.

One way to achieve the objective of improving
service level and utilization together with hmited
capacity is to give different priorities to custo-
mers. While the service provider cannot improve
service level for all the customers, he may differ-
entiate service and provide a part of customers

with a better service level than the other custo-
mers. In return, the service provider may charge
more service fee for a high service level. Express
service In transportation and expediting orders
in manufacturing systems are examples of diffe-
rentiating service based on the customer priority.

In this paper, as a criterion for customer prior-
ity, we consider availability of advance arrival
information. Customers are classified into two
groups depending on whether they notify their
arrival in advance. When a customer with ad-
vance notice finally arrives to the system, he has
a higher priority than the waiting customers who
have arrived without advance notice. However,
it 1s assumed that even a high-priority customer
cannot be served prior to the customers who ar-
rived at least A time units earlier than him. Wi~
thin the same priority group, the customers are
served in the order of their arrivals. More specif-
ically, the priority scheme can be described as
follows. The high-priority customers notify their
arrival K time units earlier. When they eventu-
ally come to the system to be served, their posi-
tion in the waiting queue is decided not by the
time they arrive but by the time they notified
their arrival. The high—class customer has prior-
ity over the low-prionty customers who have
arrived earlier but after the high-class customer
made his arrival notification. A common method
for a customer to notify his arrival is to make
a reservation. In the paper, we refer to high—-pn-
ority customers as those who have made a reser-
vation and low-priority customers as those who
have not.

There 1s little existing literature concerning
service differentiation with advance arrival in-
formation. One of notable research streams is the
study of queueing systems with scheduled arr-



vals. Scheduled armvals are related to our study
in the sense the service order is determined by
the time on the arrival schedule not by the time
when a customer actually arrives. Mercer [8] co-
nsiders a queueing system in which customers
are scheduled to arrive during equal time inter-
vals and must arrive within the scheduled inte-
rval. He analyzes the waiting time distribution
when the service time is exponential. Sabria and
Daganzo [9] consider a model where late cus-
tomers still join the system and the service may
take place in an order different from that of
arrivals. They provide light traffic approximat-
ions of the expected waiting time for general lat-
eness and service distributions. Doi et al. [3] st-
udy a queueing model with general scheduled in-
terarrival times and exponential distributions for
delay and service time. The customer arriving
after the next scheduled arrival must leave the
system immediately. For this model, they provide
the steady-state distribution of waiting time.
While the scheduled arrivals are useful to rep-
resent practical problems such as berth space
scheduling at a sea port, little has been known
about the system performance such as customer
waiting time for the cases where a late customer
can get service even after other customers have
arrived. Besides, all the customers are required
to make a schedule before arrival. In this paper,
we consider a service policy which has not been
considered in the scheduled arrival literature he-
fore. The service system accepts every arriving
customer, whether he has set up an arrival sch-
edule before the arrival or not. But, the customer
arriving without a schedule will receive a low pr-
iority of service. Under this policy, we provide a
method to differentiate the service level for high-

and low-priority customers through the asymp-
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totic analysis of waiting time distributions.

Another research stream related to service le-
vel guarantee 1s concerning quotation of leadtime.
Wein [12] studies due-date setting and priority
sequencing problems in a multi-class queueing
system. He compares a number of policies thro-
ugh simulation when the objective is to minimize
the weighted average of the time between an or-
der arrival and the quoted due date with a con-
straint on a long-run average tardiness. Duenyas
and Hopp [4] analyze a model where the custom-
er demand may depend on the quoted leadtime.
They prove the optimality of different control
policies of accepting orders to maximize profits
when the orders are served in a first-come-first-
served manner. They also give conditions under
which the earliest-due-date policy i1s optimal.
Hopp and Sturgis [6] suggest a method for quot-
ing manufacturing due dates to achieve a target
customer fill rate. Using simulation, they show
that their method of determining leadtimes as a
function of work in process predicts accurately
the leadtime.

In the above literature, the estimated leadtime
1s known to a customer when he places an order.
The quoted leadtimes change dynamically even
for the customers in the same class. In this paper,
we analyze customer service levels with a con-
stant leadtime for each customer class, with
which a target order fill rate is guaranteed over
a long-term range.

The remainder of the paper 1s organized as fol-
lows. In the next section, we describe our two—pri-
ority class model. In Section 3, we provide the anal-
ysis for approximate service levels. Section 4 dem-
onstrates the asymptotic results and trade—offs re-
garding service levels using numerical examples.
We end the paper with concluding remarks.
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2. Two-Priority Class Model

We consider a continuous time system where
a single server with limited capacity serves cus-
tomer orders. It includes production systems op-
erating under a make—-to-order policy and other
general service systems that can be modelled by
a single-server queueing system. In our model,
customers are classified into two priority classes
depending on whether they have made a reser-
vation before arriving to the system. We use the
following notations to explain the two-priority
class system.
A, :interarrival time between the n-th and
(n+1)-th arrivals
p - probability that a customer has a reser-
vation
A [ total customer arrival rate
K :time Interval between making a reser-
vation and arriving to the system
O, : service order of the n-th arriving cus-
tomer
£, :leadtime of the n-th arriving customer
W, . waiting time in the queue of the n-th ar-
riving customer
B’ : service time of the n—th departing cus-
tomer
W', : waiting time in the queue of the n-th

service position

For a random variable X, ¢x denotes its cumu-
lant generating function : ¢,(8) =logE[e’*]. Let A
and B denote random variables following the
same distribution as customer interarrival time
and service time, respectively. We define v as

follows:;

¢p(V) +d,(—=~)=0. (1)

The solution to the above equation exists for al-
most all commonly used distributions [5].

The ‘nterarrival time sequence {4, :n =0, 1, -}
1s assumed to be 1.i.d. and follow an exponential
distribution with rate A. Each incoming customer
has the identical and independent probability
0<p<1 that he has a reservation. Thus, the cus—
tomers with and without a reservation arrive ac-
cording to Poisson processes with rate pA and
(1—-p)A, respectively.

A customer arriving with a reservation is as-
sumed to make the reservation A <+co time units
before the arrival. The service starting time for
the customer 1s determined based on the reser-
vation time. In other words, he 1s served as if
he arrived at the reservation time. Thus, the cus-
tomer with a reservation has a priority over non-
reservation customers who have arrived before
him but after his reservation time. However, we
assume that the customer under service is not in-
terrupted by new arrivals of customers even with
a reservation (non-preemptive service policy).

The two-prionty scheme can be viewed in an-
other way. Assume that the service provider di-
vides his customers mnto two classes and differ-
entiates service depending on a certain criteria.
For example, a customer may have a higher pri—-
ority and receive a better service if he pays more
service fee. The service provider offers a better
service to high-priority customers by adjusting
service orders. In this case, high-priority cus-
tomers can save waiting time as much as & time
units. The waiting position of high—-priority cus-—
tomers is adjusted that he can save waiting time
as much as A time urits. The service of low—pri-
ority customers may be postponed due to high-
priority customer arrivals.

[Figure 1] explains the service order adjust-



TA £33 JRE o83 Au|A st B3 A

A 24 19

ment due to a high-priority customer arrival. A
newly arriving high-priority customer, customer
n represented by a shaded double circle, may
catch up with some low-priority customers wai-
ting in the queue; the service order U, is earlier
than the arrival order n. And the service starting
time for low-priority customers represented by
a single circle 1s delayed to serve customer n
first. However, the new arrival does not affect
the order of another high-priority customer in
service order O, —1 even if the customer has ar-
rived within A time umts of the new arnval. We
assume that in the same class the customers are
served according to their arrival orders.

We use H and L to denote the set of arrival
indices of high- and low—prority customers, re-
L =112, }\HA If n€H, then the n-th

arriving customer 1s in the high-priority class.

spectively;

Otherwise (ie. n € L), the n-th arriving customer
1s in the low-prionty class.
As mentioned above the service order 0,, wh-

ich also means the order of departing the system,

Before the »#th customer arrival

After the »th customer arrival

Q @e

highly depends on the customer priority. If n€H
then O, <n. Otherwise, O, =n. Note that the
service order O, is decided upon the arrival for
high—priority customers but not for low—priority
customers. The low-priority customer’s service
order depends on the future arrivals of high-pri-
ority customers. The service order O, for n&lL
1s decaded once the customer starts to get served
or A time units have past since he arrived.
We use a couple of notations related to service
orders for the ease of analysis. For the customer
in service order n, we denote his service time
by B, (ie. the service time of the n-th arriving
customer is 8';). We assume that the service
time sequence {B’,: n=1,2 -} is iid. and in-
dependent of the interarrival time sequence
{4,:n=0.1,} We denote the waiting time in
service position n by W',. A service position is
a place in the queue where a customer 1S waiting
before getting served. The n-th service position
1s opened as soon as the n-th customer arrives.

It 1s decided by the customer prionty which cus-

[9)]

high-prianty customer
O low- priority customer

[Figure 1] Arrival of a High-Priority Customer
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tomer will be served at the newly opened po-
sition. However, no matter who eventually takes
the position, the n-th position is to get served
W', times after it is opened. We have the follow-

ing equation for the waiting time;

i=k

W’n —MaXy ¢ 4 < n—l{oﬁnjl(B’i "’Aa')}} (2)

with W', =0, Equation (2) is similar to the defi-
nition of the waiting time in a regular sin-
gle-server FIFO queueing system, except that
{B',} is used instead of {B,}, a common notation
for service times.

Once a high-priority customer catches up one
or more low-priority customers, 1t means he ta-
kes a service position which has opened earlier
than he arrives (ie. G, <n) and his waiting time
in the queue (W,) is shorter than that of the ser-
vice position (W'5). Since the O,-th service po-
sition opened when the O,-th customer arrived,
the difference between W, and W'y, is equal to
the interarrival time between the U,-th and n-th
customers (D)1= 64;). In a similar manner, we can

get an expression for waiting time for low—prior-

ity customers. In summary,

i n—1
WO,,_ ;} A, for nEH,

0,-1
Wn+ E Bri for ne L.

F=n

3. Service Level Approximations

In this paper, customer service level 1s meas-
ured by the unfill rate, defined to be the proba-
bility that a customers's leadtime in steady state

1s longer than a target leadtime;

Pry{R>t}: = limPr{R, >tlnEH}

for high-priority customers and
Pr {F>t}: = limPr {Rn > tlnEL}

T— 00

for low—priority customers.

The leadtime, time elapsed from when a custo-
mer arrives until he departures the system, con—
sists of the waiting time in the queue and the

service time;

Rr. = ”{1 +B’0,1'

We assume that the service time is invariant
to customer priorities. A customer’s priority af-
fects the waiting time in the queue and in turn
the leadtime. For the n-th arriving customer, the
service order 0, is not later than the arrival order
n if the customer is in high-priority class. The
high priority over other customers in the queue
shortens the customer’s waiting time W, and re-
duces the leadtime #,. On the other hand, the
service order of a low-priority customer cannot
be sooner than the arrival order. Compared with
a single-customer-class case, the two-priority
queue holds low-priority customers longer in the

waiting queue and prolongs their leadtime.

3.1 High-Priority Class

In this subsection, we provide an asymptotic
result on the unfill rate of high-priority class
customers through the analysis of the waiting
time in the queue. In Equation (3), the waiting
time W, is expressed in terms of the service or-
der O,. In this subsection, we define another no-
tation related to high-priority customer service
level. For n< H,



n-—1
N :—n—Hlék<n: EA:‘. < K kELH, (4)
ik

A high-priority customer can catch up with
only the low-priority customers who have ar-
rived at most A time units earlier than he does.
The last term in (4) denotes the number of those
low-priority customers. If any such low-priority
customers are waiting in the queue, they are se-
rved after the high-priority customer. Thus, -V,
means the earliest service position that the n—th
arriving customer could take when he is in the
high-priority class. In other words, for O, for

neH |

However, the new arrnval of a high-priority
customer does not change the service order of
other high-priority customers. It also does not
interrupt the customer under service even if he
1s 1n low-priority class. Thus, to get an explicit
expression of the service order O, for n€H, we
need to consider not only how many low-priority
customers have arrived within the past .K time
units but also how many low- and high-priority
customers have been still waiting in the queue
when the n-th customer arrives. Since it would
involve additional notations and, above all, it is
not required in the development of this paper, the
equation for O, 1s not given explicitly.

The leadtime &, of high-priority customers is
closely related to the waiting time of service po-
sition &, - When there are many waiting custom-
ers In the queue, it is likely that the newly arriv-
ing high-—priority customer catches up with al-
most all the low-priority customers who have
arrived within A time units. In this case, the se-
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rvice order O, would be close to #,. The follow-
Ing result relates the leadtime £, to the waiting
time of service position #,. All the proofs in this

paper can be found in Appendix.

Lemma 1. For n€H, let

_________ n -1
R:=W, -3 A+B, (6)
i=.N,

and

d (t) - :e“’f(Pr{R‘” >t}—Pr{E’;>t}). (7)

If there exists v > O satisfying Equation (1), then

d,(t) converges to 0 uniformly in n as t—oo,
The first term on the right-hand side of
Equation (6) is the waiting time of service posi-
tion #,. The second term represents the time
elapsed after the service position %, has opened
until the n-th customer arrives to the system.
Thus, if O, =N, the difference of the two terms
(W' =22/"vA) is the waiting time in the
queue and R, is equal to the leadtime R,. If O,
differs from &, (i.e. O, >N,), it means that the
n—th arriving high-priority customer cannot pr-
oceed to the earliest service position #,. This can
happen only when the service position ¥, 1s al-
ready served or currently under service. Thus,
the waiting time of the newly armving customer
1S zero or equal to the remaining service time of
the customer under service. In this case, the
probability that the customer’s leadtime is longer
than the target leadtime t would be small.
Lemma 1 suggests a way to relate a custom-

er's leadtime to a random variable E,, which is

a function of the service position %, rather than

the service order O,. Using Lemma 1, we obtain
the following result on the unfill rate of lgh-pri-

ority customers.



Theorem 1 : If there exists v > 0 satisfying Eq-
uation (1), then the following equa-
tion holds for some constant C that

does not depend on A or p;

lime”Pr {R>t} = Ce~ T1-PIK (8)

f— 00

Theorem 1 suggests the following approxim-
ation of the unfill rate for high-prionty custom-

ers,
Pr {R>t}~ Ce 1T 1=P)K), 9)

Note that (1—p)K in the exponent on the right-
hand side is mean interarival time (1/A) multi-
plied by (1—p))K, the expected number of low-
priority customers who have arrived within &
time units before a high—priority customer arri-
ves. This number is equal to the average number
of service positions that a high—priority customer
can advance in a long waiting queue. More arriv-
als of low—prority customers in A time umts de-
crease the approximate unfill rate in Equation (9),
and thus, improve the high-priority customer se-
rvice level. This observation is consistent with
the intuition that high—priority customers would
receive a better service when the proportion of
high—priority customers is small (i.e. large 1—p)
and a customer’s priority is valid over a long pe-

riod (i.e. large K).

3.2 Low-Priority Class

For the analysis of low—priority class customer
service level, we first introduce a new variable
{M,} which is similar to {#,} for high-priority
class customers. For the n-th arriving customer
who has low priority (i.e. n € L),

M, ::n-l-Hk>n:kz_:1Aj < K, kEHH. (10)

j=n

The meanming of 4, is the last service position
that the n-th arriving customer could take when
he 1s in the low-prionty class. The newly arriv-
ing customer has a lower priority than the high-
priority customers who arrive at most A time
units later. Such high-priority customers are
served prior to the low-priority customer. How-
ever, high—priority customer arnivals do not de-
lay the service of the low-priority customer after
the low-priority customer starts to be served.

The leadtime £, of low-priority customers is
closely related to the waiting time of service po-
sition n. When there are many waiting customers
in queue so that the newly arriving low-prionty
customer should wait more than & time units in
the queue, all the high—priority customers who
arrive within next & time units will be served
prior to the low-priority customer. The following
result relates the leadtime £, to the waiting time

of service position M,

Lemma 2 : For n€eL let
. A, -1
R =W _+ )] B';+B', (11)

t=n

and

—~

d (t): =e"(Pr{R >t}-Pr{R >t}).  (12)

If there exists v > 0 satisfying Equation (1) and
¢5(27) <o then d (t) converges to 0 uniformly

In n as t—oo,

The first term on the nght-hand side of Equa-
tion (11) is the waiting time of service position
n. The second term represents the time elapsed
after the service position » has opened until the



n—-th customer starts to receive service. From
Equation (3), R, is equal to the leadtime R, if
0, =M,. Otherwise, the difference between Z,
and A, is the sum of service times of the custom-
ers served in service position O, through 44, —1,
R—R =32 B,

Lemma 2 suggests a way to relate a low—pri-
ority customer’s leadtime to a random variable
f’i;, which 1s a function of the service position
M, rather than the service order O,. Using Le-
mma 2, we obtain the following asymptotic result

on the unfill rate of low-priority customers.

Theorem 2 : If there exists v > 0 satisfying Eqg-
uation (1) and ¢5(2y) <o then the
following equality holds with the
same constant C as in Equation (8);

lime" Pr, {R>t}= Ce"".

t—m

Theorem 2 suggests the approximation of the

unfill rate for low-priority customers,
Pr {R>t}= Ce "t~ PK), (13)

Note that pA in the exponent on the right-hand
side is mean interarival time (1/A) multiplied by
pAK, the expected number of high-priority cus-
tomers who arrive within X time units after a
low-priority customer has arrived. This number
1s equal to the average number of service post-
ponements that a low-priority customer would
experience in a long waiting queue. More arrivals
of high-priority customers in A time units in—
crease the approximate unfill rate in Equation
(13), and thus, deteriorate the low-priority cus-

tomer service level. This observation 1S consis-
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tent with the intuwition that low-priority customer
would receive a better service when the propor-
tion of high—priority customers is small (i.e. sm-
all p) and a customer’s priority is valid only over
a short period (i.e. small K).

4. Trade-Offs

In the previous section, Theorems 1 and 2 sug-
gest the approximation of the unfill rate for high-
and low-priority customers as in Equation (9)
and (13). The set of target leadtime and parame-
ter K and p which lead to target customer service
levels (i.e. Pry{R>ty,} =6y and Pr {R>t,} =4,)
can be approximated by the solution to Cexp(—+
(ty + (1 -p)K)) = &, and Cexp(—~(t, — pK)) = §,.

These equations reduce to

ty=—(1—p)K+log(C/8,) /v
for high-priority and - (14)
t, =pK+log(C/5,) /v

for low—priority customers.

From the equations above, we can observe that
there exists a liner relationship between the tar-
get leadtime (t;. t;) and either parameter p or X.
For example, an increase of the proportion of
high-priority customers by 4p extends the tar-
get leadtime ty by AAp for the same high-prior-
1ty customer service level. It also results in the
same Increment in ¢, for low-priority customers.
Thus, when the fill rates are high, varying the
target leadtime and the high—priority-customer
proportion according to the linear trade-off rule

At,=KAp and At, =KAp (15)

results in little change in the fill rates.
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We demonstrate how well the linear trade-off
approximates the relationship between t and p.
We first set p=0.1 and run a simulation to identi-
fy the target leadtime for which the fill rate is
80% or higher. We then get the target leadtime,
ty and t; for different values of p according to
the linear trade-offs in Equation (15). For each
combination of @ty t;), we conduct simulation
to observe the actual fill rates for high— and low-
priority customers. Plotting the fill rates gen-
erates a curve for each customer type. When the
curve is nearly a flat line the linear trade—offs
work well.

In [Figure 2], we test three service time dis-
tributions with different variations. We study the
trade-offs between the target leadtime and the
proportion of high—priority customers when the
fill rate 1s around 809, 8596, 90%, 9596 and 99%.
All cases have A=0.9, E[B =1, K=5. We use c,
to denote the squared coefficient of variation for
service time B,

The observed fill rate curves in [Figure 2] are
close to flat for both high- and low-priority cus-
tomers when the fill rate 1s 90% or higher, re-
gardless of service time distributions. The linear
trade-off approximates very well the relationship
between leadtime ¢ and high—priority customer
proportion p which yield the same fill rate. Even
for lower fill rates (80% and 85%), the linear
trade—off still seems to work well when service
time has a large variation (¢ =1 as in (a) and
(c) of [Figure 2]). Since Theorem 1 and 2 are
limiting results with respect to the target lead-
time ¢, the trade—offs based on the results gen-
erally hold better for low-priority customers,
who experience longer leadtime.

The approximation in Equation (14) leads to

another linear trade-off involving the target le-

adtime ¢. An increase of the advance notice peri—
od K reduces the target leadtime for the high-
priority customers and extends it for low—prior-

1ty customers,

At,=~(1-p)AK and At, =pAK. (16)

We test the linear trade-off in Equation (16) in
a simlar way. We first set =1 and run a simu-
lation to identify the target leadtime for which
the fill rate 1s 80% or higher. We then calculate
the target leadtime, t; and ¢, for different values
of A according to the linear trade-offs in Equa-
tion (16).

In [Figure 3], the observed fill rate curves are
close to flat when the fill rate is 909 or higher
and service time has a large variation (¢ >1).
When the fill rate is low or the service time var-
iation is small ((b) of [Figure 3)]), the approx-
imate trade-off in Equation (16) does not work
well. In such cases, the leadtime for a certain tar-
get service level is relatively short. In the range
of short leadtime, the liner trade—off rule would
not work well because it 1s based on the asymp-
totic results which hold for long leadtime. In (b)
of [Figure 3], the trade-off does not work well
especially for high—priority customers because
an increase in K reduces the target leadtime for
high-priority additionally. On the other hand, as
K Increases so does the target leadtime for low-
priority customers. [Figure 3] shows that the lin-
ear trade-off works well for low-priority cus-
tomers with all distnbutions when the fill rate
1s 90% or higher.

Now we consider trade-offs between service
levels for high—-and low—priority customers. With-
out improving service time (increasing service rate

and/or reducing service time variation), the service



provider can improve the service level for one cus-

tomer class only at the cost of the service level for
the other customer class. Using the asymptotic re-

sults on the unfill rates, we examine how the serv-

ice provider can control the service level difference

between the two customer classes. From Theorem
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(c) Gamma Service Time with cj = 2

[Figure 2] Trade-off between Target Leadtime and p
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¥’ PrH{R> t}
t-lg.} Pr, {R>t} - ©

R (17)

The right-hand side of Equation (17), called
the asymptotic ratio, gives a hint on how much
better service, compared with the low-priority
customers, the high-priority customers receive
when the fill rates for both type customers are
high. For the same target leadtime, the unfill rate
would be lower for high-priority customers than
for low-priority customers. As expected the as-
ymptotic ratio is no more than 1, i.e. the fill rate
for high-priority customers is no less than the
fill rate for low—priority customers. The asymp-
totic ratio becomes 1 only when A=0, which in-
dicates that there 1s virtually no priority differ-
ence between customers. Note that the asymp-
totic ratio ¢ ¥ does not include p, the proportion
of high-priority customers. The trade-offs in
Equation (15) show that the change in p has the
same 1mpact on the target leadtime for both cus-
- tomer classes. Corollary 1 implies that the pro-
portion of high—-and low-priority customers has
little influence on the relative service levels be-
tween customer classes when the fill rate is high.

We conduct numerical experiments to verify

the results on the ratio of the unfill rates using

A =09, E[B =1, K=5 and two different combi-
nations of customers (p = 0.3, 0.8). [Fighre 4] pl-
ots the fill rates from simulation for both cus-
tomer classes and the actual and asymptotic ratio
of the unfill rates in Equation (14). Regardless
of p, the actual ratio of the unfill rates approaches
to the asymptotic ratio, e . In all cases, the gap
between the two ratios becomes small when the
target leadtime ¢ is long enough to make the fill
rate higher than 80%. As in [Figure 2], the asy-
mptotic results work better for service time with
a large variability. When ¢ <! as in (b) of
[Figure 4], it becomes rare to observe the lead-
time is longer than the target leadtime, which
makes it inefficient to verify an asymptotic result
through simulation.

Corollary 1 suggests that the service provider
can control the relative service levels between
customer classes through parameter X. By nu-
merical examples we demonstrate how well the
asymptotic ratio approximates the actual ratio
between unfill rates as changing A. We use the
same parameter values as in [Figure 3] except
for K. The service time is assumed to follow an
exponential distribution (y=0.1). <Table 1> lists
the experiment results such as 45 and 4, (unfill

rates for high- and low-priority customers, re—

(Table 1) Asymptotic Ratio of Unfill Rates

. t =20 t =25 t =30 ok
8 s, 48, 5, 5 5,5, 5 5, 5,19,
1 1281 | 1406 0911 | 763 831 0918 448 489 | 0916 | 0905
2 1190 | 1450 0821 | 7.09 858 0826 418 506 | 08% | 0819
3 | 1106 | 1493 0741 | 659 886 0.744 388 523 | 0743 | 0741
5 955 1584 | 0603 569 945 | 0602 335 558 | 0601 | 0607
7 8.37 1669 | 0501 490 1005 | 0488 2.92 506 | 0490 | 0497
10 | 711 1751 | 0.406 399 1089 | 0366 2.37 655 | 0361 | 0368

) 6, and 6, are in percentage.
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spectively) and the ratio 95/9; for several target
leadtime (¢ = 20, 25, 30). We choose the target
leadtime that the fill rate for both customer types

0.8 1

0.6 1

0.4

0.2 1
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1s more than 80%. In most cases, the observed
ratio 1s very close to the asymptotic ratio. When
the leadtime is shorter, for example ¢t=20 in
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[Figure 4] Asymptotic Ratio of Unfill Rates



<Table 1>, the gap between /9, and e ¥ incr-
eases as K increases. For a longer target lead-
time, the asymptotic result approximates effec-
tively the relative service level difference be-
tween customer classes. Thus, 1n order to lower
the unfill rate for high—priority customers to, say,
60% of the unfill rate for low-priority customers,
the service provider can find é proper value for
the parameter X using the asymptotic result;
K= —log(6,/6,)/v = —10g(0.6)/0.1 =5.1. The num-
erical results in <Table 1> show that the actual

service level ratio is close to 60% when A=5.

5. Concluding Remarks

In this paper, we have addressed how to man-
age customer service levels in a two-priority
system where the customers with advance ar-
rival notice have high priority. The priority sch-
eme utilizes how early the advance arrival notice
1s available. Another characteristic of the two-
priority system is the proportion of high- and
low—priority customers. We have shown analyti-
cally the impact of those system characteristics
on the unfill rates for both customer classes. We
have demonstrated theoretically and numerically
the linear trade-offs between the target leadtime
and two system characteristics (p and &) when
the fill rate is high. Using the results in this pa-
per, the service provider may answer strategic
questions such as how many high-priority cus-
tomers he can accept and what kind of leadtime
he can provide for each type of customers.

In our priority model, a customer’s high priority
1s valid only over the low-priority customers who
have arrived within a certain amount of time be-
fore the high-priority customer’s arrival. When

the priority is valid for a long period (large A),

24 2 ARG o) 47 A
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our priority model behaves similarly to the classi-
cal two-priority queue where a high-priority cus-
tomer is served before all low—priority customers
in the queue. The asymptotic waiting time for
low-priority customers is hard to compute even
with a Poisson arrival stream and exponential se-
rvice time in the classical priority queue [1, 11].
Our study provides useful asymptotic results when
the service provider has the flexibility to control
customer service levels for different groups by
adjusting the priority—assigning scheme.

In our approach, the service provider needs to
keep track of the arrival time of low-prionty
customers 1n order to decide the service position
of a high—prionty customer. It may not be prac-
tical or impossible to keep the track of customer
arrival times 1n some systems, for example, pac-
ket routers in telecommunication networks. An
alternative priority scheme in such cases is to
specify the maximum number of low-prionty cu-
stomers that a high-priority customer can catch
up with. All the asymptotic results in this paper
still remain valid with small modifications.
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(Appendix)

Proof of Lemma 1. First, we show that if
O, > N, for nEH, then

W, < ), B, (18)

If 0, >N, it means the N, -th service position

T?

started to get served before the n-th customer
arrives. Before getting served, the n-th customer
needs to wait at most for the customers in serv-
ice position N, to O, _, finish their service. Thus,
(18) holds.

Now, we show that for neH
L n-N+1
0 < Pr{R, >t}-Pr{R >t}< Pr[ Y Bpt} (19)
i=1

where {7} is iid. and bas the same distribution

as {B',}.

Pr{RE >t}
n—1
=Pr{W’0 - Y A +B, >t]
n 0" T

n—1

:Pr[On =N, WO — E A_i_+B’O >t}

) \
n—1
+Pr{0ﬂ >N, W', —- Y A+B', >t}
‘= o (20)
n—1
:Pr{W'N - ), A, +B, >t]
. X

n—1
+Pr[0n >N, W' ,— Y, A+B, >t]
s .l

n—1
—Pr{Oﬂ >N, W'y — Y, A+B, >t}
n 1:.1]\1'“ "

From Equation (18), we have that
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w,< Y B, if 0,>N,, (21)

Thus, we can get bounds on the difference of the
last two terms of Equation (20).

n—1
OSPr{O” >N, W', - Y, A4+B, >t]
" i=0, "
n—1
~Pr{0ﬂ >N, W'~ Y, A+B, >t}
" iSw, n

n—1
:Pr{Oﬂ >Nmt—*(W'0 - Y Al<B,
e :

< t—

} (using Equation (21))
n—1
W"O - E As)}
" i=0,
0,

< PriyO, >Nn_ E B'z. >t (using Eq1ati0n(18))
i=N,

n—1
r
WN,;_EA:YAI.
£= n

< Pr{on >N,B', >t—

n n—N+1_
<Pr{0,>N, Y, B, >t SPr{ D Bi}

i=N, i=1

From Equation (19), once we show that

[ B J’\"H'I‘ 1_
lime”’tPr{ >, B> t} =0 uniformly in =,

t— oo i=1

we will prove that d_(¢) defined in Equation (7)

converges to 0 uniformly in n as t—»o.
From the Markov's inequality,

n—-N,+1
Pr{ E Bi->-t]5 e_gtE[exp
i=1

t=1

0. 3 15_)]

= o R [ec‘m(f?)(n — N+ 1)}

for an arbitrary 6 > 0. From the definition of N,
in Equation (4), we have that

D —
n—N = min{n, N}
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where N is a Poisson random variable whose

definition is given in Equation (24) below. Thus,

for >~ with finite ¢,(9),

n—N,+1 .
i=1

as t—oo.

Since the right-hand side of the above inequality

does not depend on =, d_(t) converges to 0 uni-

formly in n as t—w.

Proof of Theorem 1. Let R denote a random
variable whose distribution 1s the same as
the steady-state distribution of {®, : nEH]}.
From the definition of R, and 4 (t), we

have

lime"™Pr ,{R>t} = lime"Pr {Hfb t}-l— limlimd, -

{— o0 {— o t—oon—co

Since it has been shown in Lemma 1 that d,(¢)

converges to O uniformly in n as t—oo,

limlimd, (t) = limlimd, (t) = 0.

t-——scon—o0 n— o0 f— 0o

Thus, in order to complete the proof, we need

to show that for some constant C

lime"PriR>t} = ce "0 -P)K, (22)
t—co
Let X, =B’ — A4, and define {S,} as

$ =0 and 5, =YX, (23)
k=1

If \E[B’|]<1, then W', converges weakly to

a random variable W’ which has the same dis-
tribution as max, , ,{S,} (Asmussen [2]). Let {4, }
be an ii.d. sequence with the same distribution
as {4,}. Using the result in the proof of Theorem
1 of Glasserman and Wang [5], we conclude

(W', n— N, )converges in distribution to (W,

N)with
_D ko ._
N:szo;Z}A.sK, kELH (24)

and W' is independent of & and {4}. For ex-

plaining the new notations in Equation (24), we
suppose a new system that operates under the
same rule as the original two-priority system.
The sequence of interarrival times {4} is iid.
and has the same distribution as the original
sequence {4,}. In the new system, the customers
also have the same probability 1-p of being in
low-priority class L.

From the above argument with new notations,

we have that

_ N __ _
Pri{R>t}=Priw’ — ZAE+B>t}
i=1

where B is a random variable having the same
distribution as B’, and independent of W', N
and {4, }.

Using {9,} in Equation (23), we define = = inf

N
[n>1:8 >T} with T=t+Y, 4, —B. Then,
i=1

N o
Pr{w’—»ZAﬁBm]
t=1

N
:Pr{maxn 5 09, >t EAi—B] =Pr{r< c}.
i=1

We use exponential twisting (see Chapter XII of
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Asmussen [2] for relevant background). Specifi-
cally we use gamma-twisting of {X,} and B and
(—~)-twisting of {4}, and denote the use of a
twisted measure in computing expectations by E.
Note that r is a stopping time for {X,} and ~
is a stopping time for {4,}. From Theorem XII.4.1

of Asmussen [2], we have that

— T = . !
Pr{r<oco}=E He YXi+t o) |
i=1
N A+ ou—7) _—vB+oy)
Hew it oal—7 e 7 ¢7;7‘<00

i=1

where the semicolon inside the expectation in-
dicates that the expectation is evaluated over the
event after the semicolon. Using the defimtion of

'y; we reduces the above equation further ;

- N__
Pr{ir<co}= E[exp{* 'yST-I-’yE A,— BN—~yB+ 6];T< m]
i=1

w45l s -7 -8N
—e ‘yte,dE[e 1S, )i ;7‘<00]

where B=¢y(y). Since a cumulant generating
function is convex (Kendall [7]) and ¢,(0) =0,

E[X] = E[e"X, ]| = ¢ ,(7) >0,

and thus the event of {r< o} has probability one.
The random variable 7' is independent of {S,}
and 7o as t—oo. From Corollary 8.33 of Sie-
gmund [10], we have that

where Z i1s a ladder variable. Since the distri-

bution of Z is independent of {4, }, we have that

o) 4% Al Apastel BY BEY $Y R

with C:=CG¢é’.

After (—+)-twisting, {4} has an exponential
distribution with mean 1/(A+7). It means that
under the twisted measure N has a Poisson dis-
tribution with mean (A++)(1—~p)K. Thus,

-0 = o L AENA-RP)E((y L) (] — k
E[e—,m] — E o 3k € (g\ 7)(1—p)K)
k=0 .

=expl— (A +y)(1—p)K(1—e "))

= exp(—y(1—p)K)
and we finally have Equation (22).

Proof of Lemma 2. First, we show that if 0, <
M for n&= L, then

0,-1
W' + Y, B.<K. (25)

t=n

If 0, <1, there exists at least one high-priority
customer who arrives within K time units after
the n-th customer arnved but cannot catch up
with him. This means he started to get served
before the high-priority customer arrives. His
waiting time in the queue must have been less
than K (W < &). Thus, from Equation (3), the
above inequality (25) holds.
Now, We first show that for neL

0<Pr{R>t}-Pr{R, >t}

M-n_ | (26)
< Pr[ 2. g>(13—1()/2}
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where {B,} is iid. and has the same distribution

as service time {B',}.

Pr{Rn >t}
0,—1
=Pr[W’n+ Y] B'i+B'0n>t]

t=n

0,— 1
=Pr[01r1 =M W' +),B ,+B, >t}

t=n

0,-1
+Pr{0ﬂ <M W' + ), B, +B’0n>t]
i=n (2’7)

M,—1
=Pr[W'n+ >, B, +B, >t}

i=n

0,—1
+Pr[0n <M W _+ ) B .,+B, >t]

t=n

M,—1
—-Pr[On <M, W'+ )Y, B,+B, >t]

1=n

We can get bounds on the difference of the last
two terms of Equation (27).

0,—1
0< Pr{On <M, W' +>,B ,+B,

i=n

M1
+ ), B, +B, >t}
i=0,+1 "

0,—1
—Pr{On <M, W' + >, B ,+B, >t}

i=n

0,~1 M,—1
t—W' — Y, B.— >, B’i)/Q
i=n i=0,+1

=Pr{0n <%,

0,—1
’ 4 4
<Bongt——wn—23,.]
t=n
M,—1

t—K— Y, B’i)/2}(using(25))

i=O,+1

< Pr[Oﬂ <MTB,0 >

M—1

< Pr[ Z B, >(t—K)/2} = Pr{ inﬁp (t—K)/z]

From Equation (26), once we show that

t— oo

M—n__
lime’f‘Pr{ Y, ﬁ>(ﬁ]{)/2]=0 uniformly in =,
i=1

we will prove that d_(¢) defined in Equation (12)

converges to 0 uniformly in n as t—o,
From the Markov's inequality,

My~n__
Pr[ 2 Bp(t—]{)/g]g 6—6t/2eK/2E[e¢3(9)(Mn-n)]
i=1

for an arbitrary ¢ > 0. From the definition of A,
in Equation (10), we have that

I &

M, —n M

where M is a Poisson random variable, whose
definition is given in Equation (29) below. Thus,
for ¢>2y with finite ¢,(6),

M,~n
e'ﬂPr[ Y, B> (t—K)/2}

i=1

< e—(9/2—7)teK/2E[e¢B(9)M] 50 g t—co.

Since the right-hand side of the above inequality
does not depend on n, d_(t) converges to 0 uni-

formly in » as t—o.

Proof of Theorem 2. Let & denote a random
variable whose distribution is the same as
the steady-state distribution of {&, : neL}.
From the definition of R, and d_(¢), we
have that

lime”Pr  {R>1t} = lime"Pr{&>¢t}— limlimd (¢).

t—r o0 t—r 0 f—o00onR—00

Since it has been shown in Lemma 2 that d ()

converges to 0 uniformly in n as t—oo,

lim limd, (¢) = lim limd, (¢) =o0.

t—oon—o0 n—oot— oo
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Thus, 1n order to complete the proof, we need

to show that for some constant C

lime"Pri{>1t} = cert+7/2ek, (28)

# - 0O

Using a similar method and notations as in the
prootf of Theorem 1, we can show that (W' ,

M —n) converges in distribution to (W', M)
with

D k
M szO;ZZg K, ke_ﬁ}‘ (29)
i=1

and W is independent of 37 Thus, we have that

. M+1__
Pr{R>t}=Pr{W’+ >, B;>t}
i=1

where {B,} is iid. with the same distribution as

{B',} and independent of W', and {A—}
Using {8,} in Equation (23), we define +' =inf

M+1

{n=1:8>7"} with 7" =¢— 3 B. Then,
i=1

M+1
Pri W' + S B>t
i=1

M+l
=Primax_. , S, >t— E B =Prir <co}.

1=1

With y-twisting of {X,} and {B,}, we have that

~7 ¥+ ) M1 Bt o)
Pr{7 <o}=E He Xt o y) | He YB+ ¢ 5l . < ool.

i =1 i=1
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Using the definition of v, we reduce the above
equation further;

M+ -
exp[—'}'ST» —ry E B+~ (Mt 1)}; T < 0o
~ |

Ol B S P TRy A RS S
—e 're"jE[e S )+ ;7-<oo]

where 3= ¢,(y). With the twisted measure E[.X;]

=E[e*""‘Xl]=q5’ (7)) >0, and thus the event of {7
< oo} has probability one. The random variable
7" is independent of {S,} and 7'—w as t—w,

From Corollary 833 of Siegmund [10], we have
that

¢, = limEle " "] = E[e ]

{— oo

where Z i1s a ladder variable. Since the distri-

bution of Z is independent of {ZB }, we have that

M+ > - N B
limeﬁPr{ W’+ Z Bi >t]: quE[e—d}W]: CE[e—H;W]
t— oo i=1

with C:= Ce”. Note that the constant is the same

as in Theorem 1.

Since M is independent of both {X,} and {F,,},

and we finally have Equation (28).



