DOI QR코드

DOI QR Code

시간적 군집특성을 고려한 강우모의모형의 선정

A Selection of the Point Rainfall Process Model Considered on Temporal Clustering Characteristics

  • 김기욱 (고려대학교 공과대학 건축.사회환경공학과) ;
  • 유철상 (고려대학교 공과대학 건축.사회환경공학과)
  • Kim, Kee-Wook (Dept. of Architectural, Civil & Environmental Eng., Korea Univ.) ;
  • Yoo, Chul-Sang (Dept. of Architectural, Civil & Environmental Eng., Korea Univ.)
  • 발행 : 2008.07.31

초록

본 연구에서는 관측강우의 통계특성 및 발생특성을 가장 적절하게 재현해 주는 강우모형을 선정하고자 하였다. 강우모형으로 Poisson과정에 근거한 점과정모형인 RPPM, NS-RPPM, modified NS-RPPM을 고려하여 모의자료에 대한 통계분석을 수행하였다. 그 결과, NS-RPPM과 modified NS-RPPM을 이용하여 모의된 자료가 여러 집성시간의 통계치를 적절하게 재현하였다. 또한 modified NS-RPPM을 이용하여 모의된 자료가 관측자료와 가장 유사한 발생특성을 가지는 것을 알 수 있었다. 특히, 홍수, 산사태 등 자연재해의 발생에 큰 영향을 주는 큰 강도를 가지는 강우를 관측치와 가장 유사하게 재현하였다. 모의된 강우사상의 총 강우량, 강우기간, 강우사상 간의 간격을 관측강우와 비교해본 결과 또한 modified NS-RPPM이 가장 좋은 결과를 보였다. 본 연구의 결과를 종합해 볼 때, 강우의 장기 모의를 위해 modified NS-RPPM을 이용하는 것이 가장 적절할 것으로 판단된다.

This study, a point rainfall process model, which could represent appropriately observed rainfall data, was to select. The point process models-rectangular pulses Poisson process model(RPPM), Neyman-Scott rectangular pulses Poisson process model(NS-RPPM), and modified Neyman-Scott rectangular pulses Poisson process model(modified NS-RPPM)-all based on Poisson process were considered as possible rainfall models, whose statistical analyses were performed with their simulation rainfall data. As results, simulated rainfall data using the NS-RPPM and the modified NS-RPPM represent appropriately statistics of observed data for several aggregation levels. Also, simulated rainfall data using the modified NS-RPPM shows similar characteristics of rainfall occurrence to the observed rainfall data. Especially, the modified NS-RPPM reproduces high-intensity rainfall events that contribute largely to occurrence of natural harzard such as flood and landslides most similarly. Also, the modified NS-RPPM shows the best results with respect to the total rainfall amount, duration, and inter-event time. In conclusions, the modified NS-RPPM was found to be the most appropriate model for the long-term simulation of rainfall.

키워드

참고문헌

  1. 금종호, 안재현, 김중훈, 윤용남 (2001). "점강우모형 NSRPM의 매개변수 추정." 한국수자원학회 학술발표회 논문집, 한국수자원학회, pp. 206-211
  2. 박상덕 (2002). “태풍 루사로 인한 홍수특성과 대책.” 한국수자원학회지, 한국수자원학회, Vol. 35, No. 6, pp. 36-47
  3. 신현석, 강두기, 최영돈, 갈병석 (2007). “SWAT모형을 이용한 임하댐 유역 토사 유출 성향 분석 연구.” 한국수자원학회 학술발표회 논문집, 한국수자원학회, pp. 1920-1924
  4. 유철상, 김대하 (2006). “구형펄스모형을 이용한 가뭄사상의 평가.” 한국수자원학회논문집, 한국수자원학회, Vol. 39, No. 4, pp. 373-382 https://doi.org/10.3741/JKWRA.2006.39.4.373
  5. 유철상, 김남원, 정광식 (2002). “점강우모형과 강우강도-지속기간-생기빈도 해석.” 한국수자원학회논문집, 한국수자원학회, Vol. 34, No. 6, pp. 577-586
  6. 이동률, 정상만 (1991). “한강유역 강우의 시·공간적 특성 조사연구-무강우시간에 의해 분리된 각 독립호우들의 분석 중심-.” 대한토목학회 학술발표회 논문집, 대한토목학회, pp. 382-385
  7. 이수곤 (2002). “태풍 루사에 의한 피해현황 및 대책방안(산사태).” 대한토목학회지, 대한토목학회, Vol.50, No. 10, pp. 40-49
  8. Austin, S. A. (1994). Grand Canyon: Monument to catastrophe, Institute for Creation Research, California, pp. 83-110
  9. Avanzi, G. D., Giannecchini, R., and Puccinelli, A. (2004). “The Influence of the Geological and Geomorphological Settings on Shallow Landslides. An Example in a Temperate Climate Environment: the June 19, 1996 Event in Northwestern Tuscany(Italy).” Engineering Geology, Vol. 73, pp. 215-228 https://doi.org/10.1016/j.enggeo.2004.01.005
  10. Calcaterra, D. and Santo, A. (2004). “The January 10, 1997 Pozzano Landslides, Sorrento Peninsula, Italy.” Engineering Geology, Vol. 75, pp. 181-200 https://doi.org/10.1016/j.enggeo.2004.05.009
  11. Calenda, G. and Napolitano, F. (1999). “Parameter Estimation of Neyman-Scott Processes for Temporal Point Process Simulation.” Journal of Hydrology, Vol. 225, pp. 45-66 https://doi.org/10.1016/S0022-1694(99)00133-X
  12. Cheng, J. D., Huang, Y. C., Wu, H. L., Yeh, J. L., and Chang, C. H. (2005). “Hydrometeorological and Landuse Attributes of Debris Flow and Debris Floods during Typhoon Toraji, July 29-30, 2001 in Central Taiwan.” Journal of Hydrology, Vol. 306, pp. 161-173 https://doi.org/10.1016/j.jhydrol.2004.09.007
  13. Entekhabi, D., Rodriguez-Iturbe, I., and Eagleson, P. S. (1989). “Probabilistic Representation of the Temporal Rainfall by a modified Neyman-Scott Rectangular Pulse Model: Parameter Estimation and Validation.” Water Resources Research, Vol. 25, No. 2, pp. 295-302 https://doi.org/10.1029/WR025i002p00295
  14. Favre, A. C., Musy, A., and Morgenthaler, S. (2004). “Unbiased Parameter Estimation of the Neyman-Scott Model for Rainfall Simulation with Related Confidence Interval.” Journal of Hydrology, Vol. 286, pp. 168-178 https://doi.org/10.1016/j.jhydrol.2003.09.025
  15. Guzzetti, F., Cardinali, M., Reichenbach, P., Cipolla, F., Sebastiani, C., Galli, M., and Salvati, P. (2004). “Landslides Triggered by the 23 November 2000 Rainfall Event in the Imperia Province, Western Liguria, Italy.” Engineering Geology, Vol. 73, pp. 229-245 https://doi.org/10.1016/j.enggeo.2004.01.006
  16. Islam, S., Entekhabi, D., and Bras, R. L. (1990). “Parameter Estimation and Sensitivity Analysis for the Modified Bartlett-Lewis Rectangular Pulses Model of Rainfall.” Journal of Geophysical Research, Vol. 95, No. D3, pp. 2093-2100 https://doi.org/10.1029/JD095iD03p02093
  17. Kirchner, J. W., Finkel, R. C., Riebe, C. S., Granger, D. E., Clayton, J. L., King, J. G., and Megahan, W. F. (2001). “Mountain Erosion over 10 yr, 10k.y., and 10 m.y. Time Scales.” Geology, Vol. 29, No. 7, pp. 591-594 https://doi.org/10.1130/0091-7613(2001)029<0591:MEOYKY>2.0.CO;2
  18. Meyer, G. A., Pierce, J. L., Wood, S. H., and Jull, A. J. T. (2001). “Fire, Storms, and Erosional Events in the Idaho Batholith.” Hydrological Processes, Vol. 15, pp. 3025-3038 https://doi.org/10.1002/hyp.389
  19. Perkins, S. (2000). “The Making of a Grand Canyon: Carving this beloved hole in the ground may not have been such a long-term project.” Science News, Vol. 158, Iss. 14, pp. 218-220 https://doi.org/10.2307/4018671
  20. Restrepo-Posada, P. J. and Eagleson, P. S. (1982). “Indenification of Independent Rainstorms.” Journal of Hydrology, Vol. 55, pp. 303-319 https://doi.org/10.1016/0022-1694(82)90136-6
  21. Rodriguez-Iturbe, I., Gupta, V. K., and Waymire, E. (1984). “Scale Considerations in the Modeling of Temporal Rainfall.” Water Resources Research, Vol. 20, No. 11, pp. 1611-1619 https://doi.org/10.1029/WR020i011p01611
  22. Rodriguez-Iturbe, I., Cox, D. R., and Isham, V. (1987). “Some Models for Rainfall Based on Stochastic Point Processes.” Proceedings of the Royal Society of London, Vol. A410, No. 1839, pp. 269-288
  23. Rodriguez-Iturbe, I., Cox, D. R., and Isham, V. (1988). “A Point Process Model for Rainfall: Further Developments.” Proceedings of the Royal Society of London, Vol. A417, No. 1853, pp. 283-298
  24. Velghe, T., Troch, P. A., De Troch, F. P., and Vande Velde, J. (1994). “Evaluation of Cluster-based Rectangular Pulse Point Process Models for Rainfall.” Water Resources Research, Vol. 30, No. 10, pp. 2847-2857 https://doi.org/10.1029/94WR01496

피인용 문헌

  1. A Development of Hourly Rainfall Simulation Technique Based on Bayesian MBLRP Model vol.34, pp.3, 2014, https://doi.org/10.12652/Ksce.2014.34.3.0821
  2. A Study on the Monthly Trend of Seoul Hourly Rainfall Using BLRPM vol.14, pp.4, 2014, https://doi.org/10.9798/KOSHAM.2014.14.4.267
  3. A statistical inference for Neyman-Scott Rectangular Pulse model vol.29, pp.5, 2016, https://doi.org/10.5351/KJAS.2016.29.5.887
  4. A development of multisite hourly rainfall simulation technique based on neyman-scott rectangular pulse model vol.49, pp.11, 2016, https://doi.org/10.3741/JKWRA.2016.49.11.913
  5. Study of Direct Parameter Estimation for Neyman-Scott Rectangular Pulse Model vol.42, pp.11, 2009, https://doi.org/10.3741/JKWRA.2009.42.11.1017
  6. Hourly Precipitation Simulation Characteristic Analysis Using Markov Chain Model vol.16, pp.3, 2016, https://doi.org/10.9798/KOSHAM.2016.16.3.351