Antifibrotic Activity of Manassantin B from Saururus chinensis in HSC-T6 Hepatic Stellate Cells

  • Lee, Mi-Kyeong (Institute for Life Science, Elcom Science Co. Ltd) ;
  • Yang, Hye-kyung (College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University) ;
  • Yang, Eun-Sun (College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University) ;
  • Kim, Young-Choong (College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University) ;
  • Sung, Sang-Hyun (College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University)
  • Published : 2008.06.30

Abstract

Manassantin B, a dilignan isolated from Saururus chinensis, significantly inhibited proliferation in HSC-T6 cells in concentration- and time-dependent manners. In addition, treatment of HSC-T6 cells with manassantin B changed cell morphology from flattened myofibroblastic membranous morphology, representing activation state, to slender shape, representing quiescent state. Furthermore, manassantin B effectively reduced collagen content in HSC-T6 cells. These results suggested that manassantin B exerted antifibrotic activity in HSCT6 cells, in part, via inhibition of cell proliferation and decrease of collagen production.

Keywords

References

  1. Chen, A. and Zhang, L., The antioxidant (?)-epigallocatechin-3-gallate inhibits rat hepatic stellate cell proliferation in vitro by blocking the tyrosine phosphorylation and reducing the gene expression of plateletderived growth factor-beta receptor. J. Biol. Chem. 278, 23381-23389 (2003) https://doi.org/10.1074/jbc.M212042200
  2. Chung, B.S. and Shin, M.G., Dictionary of Korean folk medicine. Young Lim Sa; 199
  3. Friedman, S.L., Liver fibrosis - from bench to beside. J. Hepatol. 38, S38-S53 (2003)
  4. Friedman, S.L., Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J. Biol. Chem. 275, 2247-2250 (2000) https://doi.org/10.1074/jbc.275.4.2247
  5. Hodges, T.W., Hossain, C.F., Kim, Y.P., Zhou, Y.D., and Nagle, D.G.., Molecular-targeted antitumor agents: The Saururus cernuus dineolignans manassantin B and 4-O-demethylmanassantin B are potent inhibitors of hypoxia-activated HIF-1. J. Nat. Prod. 67, 767-771 (2004) https://doi.org/10.1021/np030514m
  6. Kim, S.R., Sung, S.H., Kang, S.Y., Koo, K.A., Kim, S.H., Ma, C.H., Lee, H.S., Park, M.J., and Kim, Y.C., Aristolactam BII of Saururus chinensis attenuates glutamate-induced neurotoxicity in rat cortical cultures probably by inhibiting nitric oxide production. Planta Med. 70, 391-396 (2004) https://doi.org/10.1055/s-2004-818964
  7. Lee, A.K., Sung, S.H., Kim, Y.C., and Kim, S.G., Inhibition of lipopolysacchride-inducible nitric oxide synthase, TNF-$\alpha$ and COX-2 expression by sauchinone effects on I-$\kappa$B$\alpha$ phosphorylation, C/EBP and AP-1 activation. Br. J. Pharmacol. 139, 11-20 (2003a) https://doi.org/10.1038/sj.bjp.0705231
  8. Lee, J.H., Hwang, B.Y., Kim, K.S., Nam, J.B., Hong, Y.S., and Lee, J.J., Suppression of RelA/p65 transactivation activity by a lignoid manassantin isolated from Saururus chinensis. Biochem. Pharmacol. 66, 1925-1933 (2003b) https://doi.org/10.1016/S0006-2952(03)00553-7
  9. Sung, S.H., A new dineolignan from Saururus chinensis root. Fitoterapia 77, 487-488 (2006) https://doi.org/10.1016/j.fitote.2006.05.021
  10. Sung, S.H., Huh, M.S., and Kim, Y.C., New tetrahydrofuran-type sesquilignans of Saururus chinensis root. Chem. Pharm. Bull. 49, 1192-1194 (2001) https://doi.org/10.1248/cpb.49.1192
  11. Sung, S.H. and Kim, Y.C., Hepatoprotective diastereomeric lignans from Saururus chinensis herbs. J. Nat. Prod. 63, 1019-1021 (2000) https://doi.org/10.1021/np990499e
  12. Sung, S.H., Kwon, S.H., Cho, N.J., and Kim, Y.C., Hepatoprotective flavonoids of Saururs chinensis Herbs. Phytother. Res. 11, 500-503 (1997) https://doi.org/10.1002/(SICI)1099-1573(199711)11:7<500::AID-PTR139>3.0.CO;2-P
  13. Sung, S.H., Lee, E.J., Cho, J.H., Kim, H.S., and Kim, Y.C., Sauchinone, a lignan from Saururus chinensis, attenuates $CCl_4-induced toxicity in primary cultures of rat hepatocytes. Biol. Pharm. Bull. 23, 666-668 (2000) https://doi.org/10.1248/bpb.23.666
  14. Tsukada, S., Parsons, C.J., and Rippe, R.A., Mechanisms of liver fibrosis. Clin. Chim. Acta 364, 33-60 (2006) https://doi.org/10.1016/j.cca.2005.06.014
  15. Tullberg-Reinert, H. and Jundt, G.., In situ measurement of collagen synthesis by human bone cells with a Sirius Red-based colorimetric microassay: effects of transforming growth factor a2 and ascorbic acid 2-phosphate. Histochem. Cell Biol. 112, 271-276 (1999) https://doi.org/10.1007/s004180050447
  16. Vogel, S., Piantedosi, R., Frank, J., Lalazar, A., Rockey, D.C., Friedman, S.L., and Blaner, W.S., An immortalized rat liver stellate cell line (HSC-T6): a new cell model for the study for retinoid metabolism in vitro. J. Lipid Res. 41, 882-893 (2000)
  17. Wu, J. and Zern, M.A., Hepatic stellate cells: a target for the treatment of liver fibrosis. J. Gastroenterol. 35, 665-672 (2000) https://doi.org/10.1007/s005350070045