DOI QR코드

DOI QR Code

Glucose dehydrogenase 유전자의 Aeromonas hydrophila DA33으로의 도입에 따른 인산가용화 균주의 개량

Improvement of the Phosphate Solubilization Microorganism by the Introduction of Glucose Dehydrogenase Gene into Aeromonas hydrophila DA33.

  • Park, In-Hye (Department of biotechnology, College of Natural Resources and Life Science, Dong-A University) ;
  • Song, Ok-Ryul (Department of biotechnology, College of Natural Resources and Life Science, Dong-A University) ;
  • Lee, Yong-Seok (Department of biotechnology, College of Natural Resources and Life Science, Dong-A University) ;
  • Kang, Ui-Gum (Yeongnam Agricultural Research Institute, NICS) ;
  • Choi, Si-Lim (Agriculture Resources Management of Gyungnam province) ;
  • Choi, Yong-Lark (Department of biotechnology, College of Natural Resources and Life Science, Dong-A University)
  • 발행 : 2008.06.30

초록

생물비료의 개발을 위하여 분리된 난용성 인산염의 가용화능이 우수한 균주인 Aeromonas hydrophila DA33의 분자육종을 위해 인산가용화 관련 유전자를 도입하였다. E. coli의 gdh 유전자를 도입한 A. hydrophila DA33은 GDH 활성이 증가하여 유전자가 발현됨을 확인하였으며, wild type에 비해 GDH 활성이 약 40% 정도 높게 나타났으며, 이는 도입된 gdh 유전자의 발현에 의한 것으로 보여 진다. 이 균주는 인산가용화에 기여하는 유기산인 gluconate의 생성도 증가하였다. A. hydrophila DA33의 wild type과 gdh 유전자를 도입한 A. hydrophila pGHS/DA33의 난용성 인산염 가용화능을 실험한 결과, gdh 유전자를 도입한 균주의 인산 가용화능이 약 1.4배 정도의 효과를 보였다. 지금까지의 결과로 비춰볼때 앞으로 생물 비료로서의 A. hydrophila DA33 이용 가능성을 나타내며, 분자육종균 A. hydrophila pGHS/DA33은 생물비료로서의 효율성을 가질 것으로 기대된다.

Aeromonas hydrophila DA33 was isolated from cultivated soils as a bacteria having high abilities to solubilize inorganic phosphate. Glucose dehydrogenase gene (gdh) was cloned from Escherichia coli. The recombinant plasmid, pGHS containing glucose dehydrogenase gene was introduced into A. hydrophila DA33 in order to improve the activity of phosphate-solubilizing. The transformant harboring the gdh gene, A. hydrophila pGHS/DA33 increased enzyme activity. The strain also increased the gluconic acid generation that was effective for phosphate solubilization. It was possible that the strain containing pGHS produced higher solubilized phosphate with tri-calcium phosphate as the unique (P) source, in comparison with that of wild type without plasmid. These results suggest that the strain, A. hydrophila pGHS/DA33 is expected as effective biofertilizer for phosphate solubilization.

키워드

참고문헌

  1. Asea, P. E. A., R. M. N. Kucey and J. W. B. Stewart. 1998. Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biol. Biochem. 20, 459-464 https://doi.org/10.1016/0038-0717(88)90058-2
  2. Ausubel, F. M. 1992. Short protocols in molecular biology: A compendium of methods from current protocols in molecular biology. Green/Wiley, New York
  3. Biville, F., E. Turlin and F. Gasser. 1991. Mutants of Escherichia coli producing pyrroloquinoline quinone. J. Gen. Microbiol. 137, 1775-1781 https://doi.org/10.1099/00221287-137-8-1775
  4. Dubey, S. K. and S. D. Billore. 1992. Phosphate solubilizing microorganism (PSM) as inoculant their role in augmenting crop productivity India-A review. Crop. Res. Hisar. 5, 11-17
  5. Kang, S. C. and M. C. Choi. 1999. Solid culture of phosphate- solubilizing fungus, Penicillium sp. PS-113. Kor. J. Appl. Microbiol. Biotechnol. 27, 1-7
  6. Kucey, R. M. N. 1988. Effect of Penicillium bilaji on the solubility and uptake of P and micronutrients from soil by wheat. Can. J. Soil Sci. 68, 261-270 https://doi.org/10.4141/cjss88-026
  7. IIImer, P., A. Barbato and F. Schinner. 1995. Solubilization of hardly-soluble AlPO4 with P-solubilizing microorganisms. Soil Biol. Biochem. 27, 265-270 https://doi.org/10.1016/0038-0717(94)00205-F
  8. Illmer, P. and F. Schinner. 1995. Solubilization of inorganic calcium phosphate-solubilization mechanisms. Soil Biol. Biochem. 27, 257-262 https://doi.org/10.1016/0038-0717(94)00190-C
  9. Liu, S. T., L. Y. Lee, C. Y. Tai, C. H. Hung, Y. S. Chang, J. M. Wolfram, R. Rogers and A. H. Goldstein. 1992. Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coli HB101: nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinone. J. Bacteriol. 174, 5814-5819 https://doi.org/10.1128/jb.174.18.5814-5819.1992
  10. Matsushita, K., J. C. Arents, R. Bader, M. Yamada, O. Adachi and P. W. Potma. 1997. Escherichia coli is unable to produce pyrroloquinoline quinone (PQQ). Microbiology 143, 3149-3156 https://doi.org/10.1099/00221287-143-10-3149
  11. Matsushita, K., E. Shinagawa and M. Ameyama. 1982. D-gluconate dehydrogenase from bacteria, 2-keto-D-gluconate yielding, membrane-bound. Methods Enzymol. 89, 187-193 https://doi.org/10.1016/S0076-6879(82)89033-2
  12. Matsushita, K., E. Shinagawa, O. Adachi and M. Ameyama. 1978. Membrane-bound D-gluconate dehydrogenase from Pseudomonas aeruginosa. J. Biochem. 85, 1173-1181
  13. Olsthoorn, A. J. J. and J. A. Duine. 1996. Production, characterization, and reconstitution of recombinant quinoprotein glucose dehydrogenase (Soluble Type; EC 1.1.99.17) apoenzyme of Acinetobacter calcoaceticus. Arch. Biochem. Biopysics. 336, 42-47 https://doi.org/10.1006/abbi.1996.0530
  14. Raj, J., D. J. Bagyaraj and A. Manjunath. 1981. Influence of soil inoculation with vesicular-arbuscular mycorrhiza and a phosphate-dissolving bacterium on plant growth and 32P uptake. Soil Biol. Biochem. 13, 105-108 https://doi.org/10.1016/0038-0717(81)90004-3
  15. Rodriguez, H., T. Gonzalez and G. Selman. 2000. Expression of a mineral phophate solubilizing gene from Erwinia herbicola in two rhizobacterial strains. J. Biotechnol. 84, 155 https://doi.org/10.1016/S0168-1656(00)00347-3
  16. Sambrook, J. and D. W. Russell. 1989. Molecular cloning: A laboratory manual 2nd eds., Cold Spring Harbor Laboratory Press, New York
  17. Sanger, F., S. Nicklen and A. R. Coulson. 1997. DNA sequencing with chain-terminating inhibitors, Proc. Acad. Sci. USA 74, 5463-5467
  18. Sayer, J. A., S. L. Raggett and G. M. Gadd. 1995. Solubilization of insoluble metal compounds by soil fungi: Development of a screening method for solubilizing ability and metal tolerance. Mycological Res. 99, 987-991 https://doi.org/10.1016/S0953-7562(09)80762-4
  19. Song, O. R., S. J. Lee, M. W. Lee, S. L. Choi, S. Y. Chung, Y. G. Lee and Y. L. Choi. 2001. Isolation and phosphate-solubilizing characteristics of PSM, Aeromonas hydrophyla DA33. J. Life Sci. 11, 69-73
  20. Song, O. R., S. J. Lee, S. H. Kim, S. Y. Chung, I. H. Cha and Y. L. Choi. 2001. Isolation and cultural characteristics of a phosphate solubilization bacterium, Aeromonas hydrophyla DA57. J. Korean Soc. Agric. Chem. Biotechnol. 44, 251-256
  21. Varsha, N., T. Jugnu and H. H. Patel. 1993. Solubilization of natural rock phosphates and pure insoluble inorganic phosphates by Aspergillus awamori. Ind. J. Exp. Biol. 31, 747-749
  22. Yamada, M., S. Asaoka, H. Milton, J. R. Saier and Y. Yamada. 1993. Characterization of the gcd gene from Escherichia coli K-12 W3110 and regulation of its expression. J. Bacteriol. 175, 568 https://doi.org/10.1128/jb.175.2.568-571.1993
  23. Young, C. C. 1990. Effects of phosphorus-solubilizing bacteria and vesicular-arbuscular mycorrhizal fungi on the growth of tree species in subtropical-tropical soil. Soil Sci. Plant Nutr. 36, 225 https://doi.org/10.1080/00380768.1990.10414987