DOI QR코드

DOI QR Code

Proteome Analysis of Responses to Ascochlorin in LPS-induced Mouse Macrophage RAW264.7 Cells by 2-D Gel Electrophoresis and MALDI-TOF MS.

LPS로 자극된 macrophage RAW264.7 세포에서 ascochlorin에 대한 단백질체 분석

  • Chang, Young-Chae (Research Institute of Biomedical Engineering and Department of Pathology, Catholic University of Daegu School of Medicine)
  • 장영채 (대구가톨릭대학교 의용생체공학연구소, 대구가톨릭대학교 의과대학 병리학교실)
  • Published : 2008.06.30

Abstract

Ascochlorin (ASC) is prenyl-phenol compound that was isolated from the fungus Ascochyta viciae. ASC reduces serum cholesterol and triglyceride levels, and suppresses hypertension, tumor development, ameliorates type I and II diabetes. Here, to better understand the mechanisms by which ASC regulates physiological or pathological events and induces responses in the pharmacological treatment of inflammation, we performed differential analysis of the proteome of the mouse macrophage RAW264.7 cells in response to ASC. In this study, we used a proteomic analysis of LPS-induced RAW264.7 cells treated by ASC, to identify proteins potentially involved in inflammatory processes. The RAW264.7 cell proteomes with and without treatment with ASC were compared using two-dimensional electrophoresis (2-D SDS-PAGE), matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF-MS) and bioinformatics. The largest differences in expression were observed for the calreticulin (4-fold decrease), ${\beta}-actin$ (4-fold decrease) and vimentin (1.5-fold decrease). In addition, rabaptin was increased 3-fold in RAW264.7 cells treated with ASC. The expression of some selected proteins was confirmed by RT-PCR analysis.

아스코크로린(Ascochlorin, ASC)은 Ascochyta viciae로부터 추출된 프레닐페놀 물질로, 혈청 콜레스테롤과 트리글리세라이드 수치를 감소시키고 종양 성장을 억제한다는 연구 결과가 보고되어 있다. 본 논문에서는 아스코크로린이 생리학적 혹은 병리학적인 작용과 염증반응에서 약리학적으로 유도되는 반응을 어떻게 조절하며, 이러한 메커니즘에 대해 이해하기 위해 mouse macrophage Raw264.7 세포에 아스코크로린을 처리하여 이에 대한 프로테옴의 특이적인 발현에 대해 분석하였다. 따라서 본 연구는 LPS를 처리한 mouse macrophage Raw264.7 세포에 아스코크로린을 처리하여 염증과정에 관련된 단백질의 발현 양상을 확인하기 위해 프로테오믹스를 시행하였다. Mouse macrophage RAW264.7 세포에 아스코크로린을 처리한 조건과 무처리한 조건으로 나누어 two-dimensional electrophoresis (2-D SDS-PAGE), matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF-MS)와 bioinformatics 방법으로 아스코크로린을 처리한 mouse macrophage Raw264.6 세포의 프로테옴을 분석하였다. 그 결과 mouse macrophage Raw264.7 세포에 아스코크로린 처리 시 Calreticulin이 4배 감소, ${\beta}-actin$도 4배 감소 그리고 vimentin이 1.5배 감소함을 확인 할 수 있었다. 그러나 rabaptin 아스코크로린 처리에 의해 3배 증가함을 확인 할 수 있었다. 이러한 단백질 발현은 RT-PCR을 수행하여 결과에 대해 재확인 하였으며, 프로테오믹스와 동일한 결과를 얻을 수 있었다. 따라서 본 연구를 통해 LPS 처리에 의해 활성화된 mouse macrophage RAW264.7 세포에 ASC를 처리한 후 이차원 전기영동법을 이용하여, 단백질의 발현 변화 및 양상을 규명하고 단백질 지도를 확립 하였으며, RAW264.7 세포를 이용한 면역세포 모델에서 ASC의 항염증 작용을 중심으로 생리활성 조절기능을 확인 할 수 있었다. 향후 분자 기능 조절 연구와 전 임상 연구를 통해 ASC의 생리활성 조절 기능을 규명한다면 ASC는 항염증 및 항암활성을 갖는 약물로 개발될 것으로 기대된다.

Keywords

References

  1. Adams, D. O. and T. A. Hamilton. 1984. The cell biology of macrophage activation. Annu. Rev. Immunol. 2, 283-318 https://doi.org/10.1146/annurev.iy.02.040184.001435
  2. Adkins, J. N., S. M. Varnum, K. J. Auberry, R. J. Moore, N. H. Angell, R. D. Smith, D. L. Springer and J. G. Pounds. 2002. Toward a human blood serum proteome: Analysis by multidimensional separation coupled with mass spectrometry. Molecular & Celluar Proteomics 1, 947-955 https://doi.org/10.1074/mcp.M200066-MCP200
  3. Al-Sindi, K., M. H. Al-Shehabi and S. A. Al-Khalifa. 2007. Inflammatory myofibroblastic tumor of paranasal sinuses. Saud. Med. J. 28, 623-627
  4. Ando, M., S. Hirosaki, K. Tamura and T. Taya. 1984. Multiple regression analysis of the cholinesterase activity with certain physiochemical factors. Environ. Res. 33, 96-105 https://doi.org/10.1016/0013-9351(84)90011-2
  5. Basu, S. and P. K. Srivastava. 1999. Calreticulin, a peptide- binding chaperone of the endoplasmic reticulum, elicits tumor and peptide specific immunity. J. Exp. Med. 189, 797-802 https://doi.org/10.1084/jem.189.5.797
  6. Bone, R. C. 1996. Sir isaac newton, sepsis, SIRS, and CARS. Crit. Care. Med. 2, 1125-1128
  7. Cho, H. J., J. H. Kang, J. Y. Kwak, T. S. Lee, I. S. Lee, N. G. Park, H. Nakajima, J. Magae and Y. C. Chang. 2007. Ascofuranone suppresses PMA-mediated matrix metalloproteinase- 9 gene activation through the Ras/Raf/MEK/ ERK and Ap1-dependent mechanisms. Carcinogenesis 28, 1104-1110 https://doi.org/10.1093/carcin/bgl217
  8. Dongre, A. R., G. Opiteck, W. L. Cosand and S. A. Hefta. 2001. Proteomics in the post-genome age. Biopolymers 60, 206-211 https://doi.org/10.1002/1097-0282(2001)60:3<206::AID-BIP10032>3.0.CO;2-5
  9. Ducan, D. B. 1995. Multiple range and multiple F test. Biometrics. 11, 1-6
  10. Eileithyia, S., B. Naomi and W. Philip. 1999. Human Rabaptin-5 is selectively cleaved by caspase-3 during apoptosis. Journal of biological chemistry 274, 37583-37590 https://doi.org/10.1074/jbc.274.53.37583
  11. Gevaert, K. and J. Vandekerckhove. 2000. Protein identification methods in proteomics. Electrophoresis 21, 1145-1154 https://doi.org/10.1002/(SICI)1522-2683(20000401)21:6<1145::AID-ELPS1145>3.0.CO;2-Z
  12. Ghebrehiwet, B. 1989. Functions associated with the C1q receptor. Behring. Inst. Mitt. 84, 204-215
  13. Ghebrehiwet, B. and E. I. B. Peerschke. 1998. Structure and function of gC1q-R a multiligand binding membrane protein. Immunobiology 199, 225-238 https://doi.org/10.1016/S0171-2985(98)80029-6
  14. Gibran, N. S. and D. M. Heimbach. 2000. Current status of burn wound pathophysiology. Clin. Plast. Surg. 27, 11-22
  15. Hengartner, M. O. 2000. The biochemistry of apoptosis. Nature 40, 770-776
  16. Hong, S. H., K. K. Park, J. Magae, K. Ando, T. S. Lee, T. K. Kwon, J. Y. Kwak, C. H. Kim, and Y. C. Chang. 2005. Ascochlorin inhibits matrix metalloproteinase-9 expression by suppressing activator protein-1-mediated gene expression through the ERK1/2 Signaling Pathway. J. Biol. Chem. 28, 25202-25209
  17. Hosokawa, T., M. Sawada, K. Ando and G. Tamura. 1981. Alteration of cholesterol metabolism by 4-O-methylascochlorin in rats. Lipids 16, 433-438 https://doi.org/10.1007/BF02535011
  18. Hotchkiss, R. S., P. E. Swanson, J. P. Cobb, A. Jacobson, T. G. Buchman and I. E. Karl. 1997. Apoptosis in lymphoid and parenchymal cells during sepsis: findings in normal and T- and B-cell-deficient mice. Crit. Care Med. 25, 1298-1307 https://doi.org/10.1097/00003246-199708000-00015
  19. Kang, J. H., J. K. Kim, W. H. Park, K. K. Park, T. S. Lee, J. Magae, H. Nakajima, C. H. Kim and Y. C. Chang. 2007. Ascochlorin suppresses oxLDL-induced MMP-9 expression by inhibiting the MEK/ERK signaling pathway in human THP-1 macrophages. J. Cell Biochem. 102, 506-514 https://doi.org/10.1002/jcb.21312
  20. Kang, J. H., K. K. Park, I. S. Lee, J. Magae, K. Ando, C. H. Kim and Y. C. Chang. 2006. Proteome analysis of responses to ascochlorin in a human osteosarcoma cell line by 2-D gel electrophoresis and MALDI-TOF MS. J. Proteome Res. 5, 2620-2631 https://doi.org/10.1021/pr060111i
  21. Kaufmann, S. H. and W. C. Earnshaw. 2000. Induction of apoptosis by cancer chemotherapy. Exp. Cell Res. 256, 42-49 https://doi.org/10.1006/excr.2000.4838
  22. Kishore, U., R. D. Sontheimer, K. N. Sastry, K. S. Zaner, E. G. Zappi, G. R. Hughes, M. A. Khamashta, P. Strong, K. B. Reid and P. Eggleton. 1997. Release of calreticulin from neutrophils may alter C1q-mediated immune functions. Biochem. J. 322, 543-550 https://doi.org/10.1042/bj3220543
  23. Klose, J. 1999. Large-gel 2-D electrophoresis. Methods Mol. Biol. 112, 147-172
  24. Korkbko, E. V., I. V. Korkbko, I. V. Palgova and S. L. Kiselev. 2006. Apoptotic cleavage of rabaptin-5-like proteins and a model for rabaptin-5 inactivation in apoptosis. Cell Cycle. 5, 1854-1858 https://doi.org/10.4161/cc.5.16.3092
  25. Magae, J., K. Munemura, C. Ichikawa, K. Osada, T. Hanada, R. F. Tsuji, M. Yamashita, A. Hino, T. Horiuchi and M. Uramoto. 1993. Effect of microbial products on glucose consumption and morphology of macrophages. Biosci. Biotechnol. Biotechem. 57, 1628-1631 https://doi.org/10.1271/bbb.57.1628
  26. Malhotra, R., S. Thiel, K. B. M. Reid and R. B. Sim. 1990. Human leukocyte C1q receptor binds other soluble proteins with collagen domains. J. Exp. Med. 172, 955 https://doi.org/10.1084/jem.172.3.955
  27. Mann, M. 1999. Quantitative proteomics. Nat. Biotechnol. 17, 954-955 https://doi.org/10.1038/13646
  28. Meier, P., A. Finch and G. Evan. 2000. Apoptosis indevelopment. Nature. 407, 796 https://doi.org/10.1038/35037734
  29. Moisan, E., S. Chiasson and D. Girard. 2007. The intriguing normal acute inflammatory response in mice lacking vimentin. Clin. Exp. Immunol. 150, 158-168 https://doi.org/10.1111/j.1365-2249.2007.03460.x
  30. Morimoto, R. I., K. D. Sarge and K. Abravaya. 1992. Transcriptional regulation of heat shock genes. A paradigm for inducible genomic responses. J. Biol. Chem. 267, 21987-21990
  31. Nanney, L. B., B. A. Wenczak and J. B. Lynch. 1996. Progressive burn injury documented with vimentin immunostaining. J. Burn. Care Rehabil. 17, 191-198
  32. Novick, P. and M. Zerial. 1997. The diversity of Rab proteins in vesicle transport. Curr. Opin. Cell Biol. 9, 496-504 https://doi.org/10.1016/S0955-0674(97)80025-7
  33. O'Farrell, P. H. 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007-4021
  34. Overall, C. M., J. L. Wrana and J. Sodek. 1989. Independent regulation of collagenase, 72-kDa progelatinase, and metalloendoproteinase inhibitor expression in human fibroblasts by transforming growth factor-beta. J. Biol. Chem. 264, 1860-1869
  35. Peerschke, E. I. B. and B. Ghebrehiwet. 1998. Platelet receptors for the complement component C1q: implications for hemostasis and thrombosis. Immunobiol. 199, 239-249 https://doi.org/10.1016/S0171-2985(98)80030-2
  36. Pieper, R. C., L. Gatlin, A. J. Makusky, P. S. Russo, C. R. Schatz, S. S. Miller, Q. Su, A. M. Estock, P. P. Parmar, M. Zhao, S. T. Huang, J. Zhou, F. Wang, R. Esquer-Blasco, N. L. Anderson, J. Taylor and S. Steiner. 2003. The human serum proteome: Display of nearly 3700 chromatographically separated protein spots on two-dimensional eletrophoresis gels and identification of 325 distinct proteins. Proteomics 3, 1345-1364 https://doi.org/10.1002/pmic.200300449
  37. Reed, J. C. 1994. Bcl-2 and the regulation of programmed cell death. J. Cell Biol. 124, 1-6 https://doi.org/10.1083/jcb.124.1.1
  38. Rogers, H. W., M. P. Callery, B. Deck and E. R. Unanue. 1996. Listeria monocytogenes induces apoptosis of infected hepatocytes. J. Immunol. 156, 679-684
  39. Sato, A. K., D. J. Sexton, L. A. Morganelli, E. H. Cohen, Q. L. Wu, G. P. Conley, Z. Streltsova, S. W. Lee, M. Devlin, D. B. DeOliveira, J. Enright, R. B. Kent, C. R. Wescott, T. C. Ransohoff, A. C. Ley and R. C. Ladner. 2002. Development of mammalian serum albumin affinity purification media by peptide phage display. Biotechnol. Prog. 1, 947-955
  40. Sim, R. B., S. K. Moestrup, G. R. Stuart, N. J. Lynch, J. Lu, W. J. Schwaeble and R. Malhotra. 1998. Interactions of C1q and the collectins with the potential receptors calreticulin (cC1qR/collectin receptor) and megalin. Immunobiology. 199, 208-224 https://doi.org/10.1016/S0171-2985(98)80028-4
  41. Singh, N. K., C. D. Atreya and H. L. Nakhashi. 1994. Identification of calreticulin as a rubella virus RNA binding protein. Proc. Acad. Sci. U.S.A. 91, 12770-12774 https://doi.org/10.1073/pnas.91.26.12770
  42. Somssich, I. E., E. Schmelzer, P. Kawalleck and K. Hahlbrock. 1988. Gene structure and in situ transcript localization of pathogenesis-related protein 1 in parsley. Mol. Gen. Genet. 213, 93-98 https://doi.org/10.1007/BF00333403
  43. Steel, L. F., M. G. Trotter, P. B. Nakajima, T. S. Mattu, G. Gonye and T. Block. 2003. Efficient and specific removal of albumin from human serum samples. Molecular & Celluar Proteomics 2, 262-270 https://doi.org/10.1074/mcp.M300026-MCP200
  44. Takatsuki, A., G. Tamura and K. Arima. 1969. Antiviral and antitumor antibiotics. XIV. Effects of ascochlorin and other respiration inhibitors on multiplication of Newcastle disease virus in cultured cells. Appl. Microbiol. 17, 825-982
  45. Takemura, Y., N. Ouchi and R. Shibata. 2007. Adiponectin modulates inflammatory reactions via calreticulin receptor- dependent clearance of early apoptotic bodies. J. Clin. Invest. 117, 375-386 https://doi.org/10.1172/JCI29709
  46. Tenner, A. J. 1998. C1q receptors: regulating specific functions of phagocytic cells. Immunobiology 199, 250-264 https://doi.org/10.1016/S0171-2985(98)80031-4
  47. Togashi, M., S. Ozawa, S. Abe, T. Nishimura, M. Tsuruga, K. Ando, G. Tamura, S. Kuwahara, M. Ubukata and J. Magae. 2003. Ascochlorin derivatives as ligands for nuclear hormone receptors. J. Med. Chem. 46, 4113-4123 https://doi.org/10.1021/jm0205649
  48. Togashi, M., H. Masuda, T. Kawada, M. Tanaka, K. Saida, K. Ando, G. Tamura and J. Magae. 2002. PPARgamma activation and adipocyte differentiation induced by AS-6, a prenyl-phenol anti-diabetic antibiotic. J. Antibiot. 55, 417-422 https://doi.org/10.7164/antibiotics.55.417
  49. Tsuruga, M., H. Nakajima, S. Ozawa, M. Togashi, Y. C. Chang, K. Ando and J. Magae. 2004. Characterization of 4-O-methyl-ascochlorin-induced apoptosis in comparison with typical apoptotic inducers in human leukemia cell lines. Apoptosis 9, 429-435 https://doi.org/10.1023/B:APPT.0000031456.09297.8f
  50. Wang, S. D., K. J. Huang, Y. S. Lin and H. Y. Lei. 1994. Sepsis-induced apoptosis of the thymocytes in mice. J. Immunol. 15, 5014-5021
  51. Wasinger, V. C., S. J. Cordwell, A. Cerpa-poljak, J. X. Yan, A. A. Gooley and M. R. Wilkins. 1995. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 16, 1090-1094 https://doi.org/10.1002/elps.11501601185
  52. Zamora, R., Y. Vodovotz and T. R. Billiar. 2000. Inducible nitric oxide synthase and inflammatory diseases. Mol. Med. 6, 347-373