DOI QR코드

DOI QR Code

The Effect of Exercise Training on Aβ-42, BDNF, GLUT-1 and HSP-70 Proteins in a NSE/ APPsw-transgenic Model for Alzheimer's Disease.

지구성 운동이 NSE/APPsw 알츠하이머 질환 생쥐의 인지능력, Aβ-42, BDNF, GLUT-1과 HSP-70 단백질 발현에 미치는 영향

  • Eum, Hyun-Sub (Exercise Biochemistry Laboratory, Korea National Sport University) ;
  • Kang, Eun-Bum (Exercise Biochemistry Laboratory, Korea National Sport University) ;
  • Lim, Yea-Hyun (Exercise Biochemistry Laboratory, Korea National Sport University) ;
  • Lee, Jong-Rok (Exercise Biochemistry Laboratory, Korea National Sport University) ;
  • Cho, In-Ho (Exercise Biochemistry Laboratory, Korea National Sport University) ;
  • Kim, Young-Soo (Korea Institute of Sport Science) ;
  • Chae, Kab-Ryoung (Division of Laboratory Animal Resources, and National Institute of Toxicological Research, Korea FDA) ;
  • Hwang, Dae-Yean (College of National Resources & Life Science, Pusan National University) ;
  • Kwak, Yi-Sub (Department of Physical Education, Dong-Eui University) ;
  • Oh, Yoo-Sung (Department of Physical Education, Seoul City University) ;
  • Cho, Joon-Yong (Exercise Biochemistry Laboratory, Korea National Sport University)
  • 엄현섭 (한국체육대학교 체육과학관 운동생화학실) ;
  • 강은범 (한국체육대학교 체육과학관 운동생화학실) ;
  • 임예현 (한국체육대학교 체육과학관 운동생화학실) ;
  • 이종록 (한국체육대학교 체육과학관 운동생화학실) ;
  • 조인호 (한국체육대학교 체육과학관 운동생화학실) ;
  • 김영수 (체육과학연구원) ;
  • 채갑룡 (식약청 독성연구소 실험동물자원실) ;
  • 황대연 (부산대학교 생명응용과학부) ;
  • 곽이섭 (동의대학교 체육학과) ;
  • 오유성 (서울시립대학교 생활체육학과) ;
  • 조준용 (한국체육대학교 체육과학관 운동생화학실)
  • Published : 2008.06.30

Abstract

Mutations in the APP gene lead to enhanced cleavage by ${\beta}-$ and ${\gamma}-secretase$, and increased $A{\beta}$ formation, which are closely associated with Alzheimer's disease (AD)-like neuropathological changes. Recent studies have shown that exercise training can ameliorate pathogenic phenotypes ($A{\beta}-42$, BDNF, GLUT-1 and HSP70) in experimental models of Alzheimer's disease. Here, we have used NSE/APPsw transgenic mice to investigate directly whether exercise training ameliorates pathogenic phenotypes within Alzheimer's brains. Sixteen weeks of exercise training resulted in a reduction of $A{\beta}-42$ peptides and also facilitated improvement of cognitive function. Furthermore, GLUT -1 and BDNF proteins produced by exercise training may protect brain neurons by inducing the concomitant expression of genes that encode proteins (HSP-70) which suppress stress induced neuron cell damages from APPsw transgenic mice. Thus, the improved cognitive function by exercise training may be mechanistically linked to a reduction of $A{\beta}-42$ peptides, possibly via activation of BDNF, GLUT-1, and HSP-70 proteins. On the basis of the evidences presented in this study, exercise training may represent a practical therapeutic management strategy for human subjects suffering from Alzheimer's disease.

알츠하이머 질환은 신경퇴행성질환으로 노령인구에서 뿐만 아니라 $30{\sim}60$세 사이에서도 상염색체성우성형으로 발생하여 사회문제로 대두되고 있으며 발병기전도 명확하게 규명되지 않은 상태이다. 따라서 이 연구에서는 hAPP695sw 돌연변이를 neuron-specific enolase (NSE) 유전자의 프로모터 조절 하에 연결시킨 융합 유전자(pNSE/APP695sw fusion gene)를 과 발현시킨 알츠하이머 질환 모델생쥐를 대상으로 16주간 지구성 운동에 따른 알츠하이머 질환 모델생쥐의 인지능력의 변화와 주병변인 $A{\beta}-42$ 단백질과 함께 GLUT-1, BDNF, HSP-70 단백질의 발현량을 분석하였다. 그 결과 지구성 운동은 APPsw 알츠하이머 질환 모델생쥐의 인지능력을 개선시키는데 긍정적인 영향을 미친 것으로 나타났으며 이러한 인지능력의 개선은 알츠하이머 질환의 주 병변인 뇌의 $A{\beta}-42$ 감소뿐만 아니라 BDNF, GLUT-1과 HSP-70 단백질의 발현 증가와 관련이 있음을 확인하였다. 따라서 지구성 운동은 약물 처치 이외에 알츠하이머 질환을 예방하거나 지연시킬 수 있는 전략적인 방법으로 활용할 수 있음을 알 수 있다.

Keywords

References

  1. Korea Institute and Social Affairs, 2007
  2. Adlard, P. A., V. M. Perreau, V. Pop and C. W. Cotman. 2005. Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer's disease. J. Neurosci. 25, 4217-4221 https://doi.org/10.1523/JNEUROSCI.0496-05.2005
  3. Black, J. E., K. R. Isaacs and W. T. Greenough. 1991. Usual vs. successful aging: some notes on experiential factors. Neurobiol. Aging 12, 325-328 https://doi.org/10.1016/0197-4580(91)90009-9
  4. Blass, J. P. 2001. Brain metabolism and brain disease: is metabolic deficiency the proximate cause of Alzheimer dementia? J. Neurosci. Res. 66, 851-856 https://doi.org/10.1002/jnr.10087
  5. Cho, J. Y., D. Y. Hwang, T. S. Kang, D. H. Shin, J. H. Hwang, C. H. Lim, S. H. Lee, H. J. Lim, S. H. Min, S. J. Seo, Y. S. Song, K. T. Nam, K. S. Lee, J. S. Cho and Y. K. Kim. 2003. Use of NSE/PS2m-transgenic mice in the study of the protective effect of exercise on Alzheimer's disease. J. Sports Sci. 21, 943-951 https://doi.org/10.1080/0264041031000140365
  6. Choeiri, C., W. Staines and C. Messier. 2002. Immunohistochemical localization and quantification of glucose transporters in the mouse brain. Neuroscience 111, 19-34 https://doi.org/10.1016/S0306-4522(01)00619-4
  7. Chong, Z. Z., F. Li and K. Maiese. 2005. Oxidative stress in the brain: novel cellular targets that govern survival during neurodegenerative disease. Prog. Neurobiol. 75, 207-246 https://doi.org/10.1016/j.pneurobio.2005.02.004
  8. Cotman, C. W. and N. C. Berchtold. 2002. Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 25, 295-301 https://doi.org/10.1016/S0166-2236(02)02143-4
  9. Cotman, C. W., N. C. Berchtold and L. A. Christie. 2007. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 30, 464-472 https://doi.org/10.1016/j.tins.2007.06.011
  10. Ding, Y. H., J. Li, Y. Zhou, J. A. Rafols, J. C. Clark and Y. Ding. 2006. Cerebral angiogenesis and expression of angiogenic factors in aging rats after exercise. Curr. Neurovasc. Res. 3, 15-23 https://doi.org/10.2174/156720206775541787
  11. Farkas, E. and P. G. Luiten. 2001. Cerebral microvascular pathology in aging and Alzheimer's disease. Prog. Neurobiol. 64, 575-611 https://doi.org/10.1016/S0301-0082(00)00068-X
  12. Hager, K., A. Marahrens, M. Kenklies, P. Riederer and G. Munch. 2001. Alpha-lipoic acid as a new treatment option for Azheimer type dementia. Arch. Gerontol. Geriatr. 32, 275-282 https://doi.org/10.1016/S0167-4943(01)00104-2
  13. Hock, C., K. Heese, C. Hulette, C. Rosenberg and U. Otten. 2000. Region-specific neurotrophin imbalances in Alzheimer disease: decreased levels of brain-derived neurotrophic factor and increased levels of nerve growth factor in hippocampus and cortical areas. Arch. Neurol. 57, 846-851 https://doi.org/10.1001/archneur.57.6.846
  14. Hooijmans, C. R., C. Graven, P. J. Dederen, H. Tanila, T. van Groen and A. J. Kiliaan. 2007. Amyloid beta deposition is related to decreased glucose transporter-1 levels and hippocampal atrophy in brains of aged APP/PS1 mice. Brain Res. 1181, 93-103 https://doi.org/10.1016/j.brainres.2007.08.063
  15. Horwood, N. and D. C. Davies. 1994. Immunolabelling of hippocampal microvessel glucose transporter protein is reduced in Alzheimer's disease. Virchows Arch. 425, 69-72
  16. Hsiao, K., P. Chapman, S. Nilsen, C. Eckman, Y. Harigaya, S. Younkin, F. Yang and G. Cole. 1996. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274, 99-102 https://doi.org/10.1126/science.274.5284.99
  17. Hwang, D. Y., J. S. Cho, S. H. Lee, K. R. Chae, H. J. Lim, S. H. Min, S. J. Seo, Y. S. Song, C. W. Song, S. G. Paik, Y. Y. Sheen and Y. K. Kim. 2004. Aberrant expressions of pathogenic phenotype in Alzheimer's diseased transgenic mice carrying NSE-controlled APPsw. Exp. Neurol. 186, 20-32 https://doi.org/10.1016/j.expneurol.2003.09.021
  18. Kumar, P., R. K. Ambasta, V. Veereshwarayya, K. M. Rosen, K. S. Kosik, H. Band, R. Mestril, C. Patterson and H. W. Querfurth. 2007. CHIP and HSPs interact with beta- APP in a proteasome-dependent manner and influence Abeta metabolism. Hum. Mol. Genet. 16, 848-864 https://doi.org/10.1093/hmg/ddm030
  19. Lazarov, O., J. Robinson, Y. P. Tang, I. S. Hairston, Z. Korade-Mirnics, V. M. Lee, L. B. Hersh, R. M. Sapolsky, K. Mirnics and S. S Sisodia. 2005. Environmental enrichment reduces Abeta levels and amyloid deposition in transgenic mice. Cell 120, 701-713 https://doi.org/10.1016/j.cell.2005.01.015
  20. Lee, V. M. and J. Q. Trojanowski. 1992. The disordered neuronal cytoskeleton in Alzheimer's disease. Curr. Opin. Neurobiol. 2, 653-656 https://doi.org/10.1016/0959-4388(92)90034-I
  21. Melling, C. W., D. B. Thorp, K. J. Milne, M. P. Krause and E. G. Noble. 2007. Exercise-mediated regulation of Hsp70 expression following aerobic exercise training. Am. J. Physiol. Heart Circ. Physiol. 293, H3692-3698 https://doi.org/10.1152/ajpheart.00827.2007
  22. Neeper, S. A., F. Gomez-Pinilla, J. Choi and C. W. Cotman. 1996. Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res. 726, 49-56 https://doi.org/10.1016/0006-8993(96)00273-9
  23. Nichol, K. E., A. I. Parachikova and C. W. Cotman. 2007. Three weeks of running wheel exposure improves cognitive performance in the aged Tg2576 mouse. Behav. Brain Res. 184, 124-132 https://doi.org/10.1016/j.bbr.2007.06.027
  24. Rogaev, E. I., R. Sherrington, E. A. Rogaeva, G. Levesque, M. Ikeda, Y. Liang, H. Chi, C. Lin, K. Holman, T. Tsuda. 1995. Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature 376, 775-778 https://doi.org/10.1038/376775a0
  25. Russo-Neustadt, A. A., H. Alejandre, C. Garcia, A. S. Ivy and M. J. Chen. 2004. Hippocampal brain-derived neurotrophic factor expression following treatment with reboxetine, citalopram, and physical exercise. Neuropsychopharmacology 29, 2189-2199 https://doi.org/10.1038/sj.npp.1300514
  26. Spirduso, W. W. 1983. Exercise and the Aging Brain. (The 1982 CH McCloy Research Lecture), pp. 208-218
  27. Tanzi, R. E., D. M. Kovacs, T. W. Kim, R. D. Moir, S. Y. Guenette and W. Wasco, 1996. The gene defects responsible for familial Alzheimer's disease. Neurobiol. Dis. 3, 159-168 https://doi.org/10.1006/nbdi.1996.0016
  28. van Praag, H., G. Kempermann and F. H. Gage. 1999. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat. Neurosci. 2, 266-270 https://doi.org/10.1038/6368
  29. Wolf, S. A., G. Kronenberg, K. Lehmann, A. Blankenship, R. Overall, M. Staufenbiel and G. Kempermann. 2006. Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer's disease. Biol. Psychiatry. 60, 1314-1323 https://doi.org/10.1016/j.biopsych.2006.04.004
  30. Xie, L., E. Helmerhorst, K. Taddei, B. Plewright, W. van Bronswijk and R. Martins. 2002. Alzheimer's beta-amyloid peptides compete for insulin binding to the insulin receptor. J. Neurosci. 22, RC221 https://doi.org/10.1523/JNEUROSCI.22-10-j0001.2002
  31. Yenari, M. A., J. Liu, Z. Zheng, Z. S. Vexler, J. E. Lee and R. G. Giffard. 2005. Antiapoptotic and anti-inflammatory mechanisms of heat-shock protein protection. Ann. N.Y. Acad. Sci. 1053, 74-83 https://doi.org/10.1196/annals.1344.007
  32. Yoo, B. C., S. H. Kim, N. Cairns, M. Fountoulakis and G. Lubec. 2001. Deranged expression of molecular chaperones in brains of patients with Alzheimer's disease. Biochem. Biophys. Res. Commun. 280, 249-258 https://doi.org/10.1006/bbrc.2000.4109

Cited by

  1. Neuronal Cell Protection and Antioxidant Activities of Hot Water Extract from Commercial Buckwheat Tea vol.18, pp.3, 2011, https://doi.org/10.11002/kjfp.2011.18.3.358