[논문] 열처리공학회지, 제21권 제6호(2008) J. of the Korean Society for Heat Treatment, Vol. 21, No. 6, (2008) pp. 293~299

상용 AZ31B Mg합금 판재의 어닐링에 따른 집합조직 변화 및 결정립 이상 성장

양권승* · 윤성식 · 장우양 · 강조원[†]

조선대학교 금속재료공학과, *조선대학교 신소재공학과

Effects of Annealing on the Texture Development and Abnormal Grain Growth in a Commercial AZ31B Mg Alloy Sheet

G. S. Yang*, S. S. Yoon, W. Y. Jang, J. W. Kang[†]

Dept. of Metallurgical Engineering, Chosun University, Gwangju 501-759, Korea *Dept. of Advanced Materials Engineering, Chosun University, Gwangju 501-759, Korea

Abstract In order to provide with fundamental data of the wrought Mg alloy for press forging, the effect of annealing temperature on the microstructure, texture development and tensile properties is studied in a commercial AZ31B Mg alloy sheet. Basal texture *i.e.* (0001) \pm 5°[2130] is developed in a commercial AZ31B Mg sheet, and the texture is not changed considerably by annealing over 400°C × 30 min, while (1010) component with high intensity can be observed due to abnormal grain growth. When the sheet is tensile-deformed with RD, 45° and TD directions at room temperature, fracture strains are given by 25.8, 21.4 and 11.9% in the order of RD, 45° and TD directions, respectively. With increasing annealing temperature up to 450°C × 30 min, little change in mean grain size can be revealed by annealing below 300°C × 30 min but an abnormal grain growth, where some grains become significantly coarser than the rest, occurs by annealing above 400°C × 30 min. The maximum tensile strain of around 25% is obtained by annealing below 300°C × 30 min, but it is abruptly decreased to 16% by annealing above 400°C × 30 min owing to intergranular fracture of abnormal grown grains.

(Received October 30, 2008; Revised November 7, 2008; Accepted November 12, 2008)

Key words: AZ31 Mg alloy, Annealing, Texture, Abnormal grain growth, Tensile property

1. 서 론

Mg 합금은 실용합금 중 비강도가 가장 크고 동시 에 제진특성 및 전자파 차폐 특성 등을 갖기 때문에 승용차의 판넬류, 노트북 컴퓨터 및 휴대용 통신기기 의 케이스 등의 제조에 필수적인 합금소재이다[1].그 러나 Mg 합금은 슬립계가 제한된 hcp 결정구조를 갖는 합금으로서 상온에서의 성형성이 좋지 않기 때문 에 산업용 부품을 제조하기 위해서는 주로 다이캐스 팅, 레오캐스팅 또는 반용융 주입법 등과 같은 주조법 [2, 3]이 아용되고 있으나 이들 공정은 후처리공정이 필요하고 대량생산에는 제조원가의 상승이 수반된다. 따라서 이러한 주조법에 의한 부품 제조 공정상의 단점을 보완하고 Mg 합금의 활용범위를 넓히기 위 해서는 성형성이 우수한 Mg 합금 판재의 개발이 선 행되어야 하고 Mg 합금 판재로부터 상온 또는 온간 프레스 성형에 의해 부품을 제조하기 위한 성형기술 이 확보되어야 한다.

Mg 합금의 프레스 성형공정에서 성형성은 금형, 성형온도, 성형하중 및 성형속도 등과 같은 공정상의 요인뿐만 아니라 Mg 합금의 미세조직, 결정립 크기 및 우선방위 생성 등과 같은 금속조직학적 요인들에 의해 크게 영향을 받는다[4, 5].

특히 가공용 합금인 AZ31B Mg 합금에서 성형성 은 결정립 크기 및 집합조직 유무 등에 의해 큰 영 향을 받기 때문에 ECAP(Equal Channel Angular Pressing), ECAE(Equal Channel Angular Extrusion), DSR(Differential Speed Rolling) 및 SPD(Severe Plastic Deformation) 등에 의해 미세조직을 제어하 고자 하는 많은 연구결과들이 보고[6-8]되고 있으며

[†]E-mail : jwbkang@chosun.ac.kr

일부는 상용화되어 시판되고 있다. 그러나 시판 AZ31B Mg 합금 판재는 hcp 결정구조, 제한된 슬 립계 및 압연 집합조직 발달 등에 의해 상온에서의 좋지 않은 성형성 때문에 고체윤활제를 사용하여 250°C 이상에서 프레스 성형에 의해 부품을 제조한다. 본 연구에서는 AZ31B Mg 합금 판재의 온간 프 레스 성형시 성형온도의 변화에 따른 미세조직 및 결정립 크기 등에 대한 금속학적 기초자료를 제공하 고자 국내 P사에서 제조되어 시판 중인 AZ31B Mg 합금 판재를 200°C~450°C 온도구간에서 어닐 링하여 어닐링 온도에 따른 미세조직, 집합조직 및 인장성질의 변화 등에 대하여 조사하였다.

2. 실험방법

본 실험에 사용된 AZ31B Mg 합금은 POSCO에 서 제조한 판재(t = 3 mm)로서 as-received 상태에 서 결정립 크기는 약 3 µm이었다. AZ31B Mg 합 금 판재에 대한 어닐링 전후의 집합조직의 변화는 Schultz 반사법에 의해 (0001)_{hcp}, 및 (1010)_{hcp} 극점 도를 측정하였다.

어널링 온도에 따른 미세조직 및 결정립 크기 등 을 비교하기 위하여 판재를 압연방항에 평행하게 절 단하여 200°C~450°C 온도구간에서 각각 30분간 어널링하였으며, 이 때 어널링 처리 중 표면 산화를 방지하기 위하여 판재를 알루미늄 박으로 밀봉하였으 며 어닐링 후 공냉하였다.

미세조직은 아세트산(CH₃COOH) 5% + 증류수 10% + Ethanol 80% + 피크린산(C₆H₃N₃O₇) 1 g의 혼합용액에서 엣칭한 후 세척 · 건조하여 광학현미경 및 FESEM으로 관찰하였으며 어닐링 온도에 따른 결정립 크기는 화상분석기를 이용하여 측정하였다.

AZ31B Mg 합금 판재의 어닐링 온도에 따른 경 도값의 변화를 조사하기 위하여 비커어스 경도 시험 기를 이용하여 하중 5 kg에서 경도 시험하였으며, 경 도값은 5회 측정하여 평균하였다. 압연방향 및 어닐 링조건에 따른 인장성질을 비교하기 위하여 ASTM Sub-size의 인장시편을 제작하여 인장속도 1 mm/ min에서 인장시험하여 응력-변형률 곡선을 구하였으 며, 인장 시험후 피단면을 전계주사전자현미경으로 관찰하였다.

(0001)

$(10\bar{1}0)$

Fig. 1. (0001) and $(10\overline{1}0)$ pole figures of as-received AZ31B Mg sheet.

3. 실험결과 및 고찰

3.1 AZ31B Mg합금 판재의 집합조직 및 인 장성질

일반적으로 압연에 의해 압연판재는 압연방향으로

294

는 인장변형을 그리고 두께방향으로는 압축변형을 받 게 되며 동시에 합금계 및 가공도 등에 따라 압연 방향(RD) 또는 수직방향(ND)에서 특정한 결정면을 나타내게 되며, 이러한 우선방위는 기계적 성질을 포 함한 제 특성들에 대하여 이방성을 나타낸다.

Fig. 1은 as-received 상태의 AZ31B Mg합금 판 재에 대해 Schultz반사법으로 측정한 (0001) 및 (1010) 극점도를 나타낸다. As-received 상태의 극 점도를 나타낸 Fig. 1을 보면 압연판재의 두께방향 (ND)으로 (0001)면이 나타나는 저면 집합조직을 나 타내고 있으며 이러한 (0001)면들은 압연방향으로 ± 5° 정도 벗어나 있다. 한편 각통면(Prism plane) 인 (1010)면은 $\theta_1 = 87$, $\phi_1 = 20$, $\theta_2 = 87$, $\phi_2 = -40$, $\theta_3 = 84$, $\phi_3 = -160$ 및 $\theta_4 = 86$, $\phi_4 = 141$ 에서 강 도가 큰 (1010)면의 극점들이 관찰되었으며 이러한 극점들은 TD방향으로 섬유상 형태로 분포되어 있다.

Fig. 2는 Fig. 1과 같은 결정 이방성을 갖는 판재 를 압연방향, TD방향 및 45° 방향으로 인장시편을 채취하여 인장시험한 결과를 나타낸다. 세 종류의 시 편에서 항복강도 및 최대인장강도 값은 큰 차이를 나타내지 않았으나, 연신율은 RD 방향, 45° 방향 및 TD 방향 순으로 각각 25.8%, 21.4% 및 11.9%로 니타났다. 이러한 연신율에 대한 이방성은 집합조직 을 갖는 합금에서 나타나는 특징으로서 인장방향에 대해 각각 다른 슬립계가 작용하기 때문이다. 즉 hcp 결정구조를 갖는 Mg 합금에서 슬립은 변형온도 에 따라 (0001), (1101) 또는 (1100)면 등에서 [1120] 방향으로 일어나나 상온에서의 주 슬립계는 (0001)[1120]으로 보고[9]되고 있다. Fig. 1의 극점 도를 해석해 보면 압연판재의 주방위는 (0001) ± 5° [2130]로서 45° 방향은 [2110] 방향 그리고 TD 방 향은 [4510] 방향임을 알 수 있다. 따라서 Fig. 1과 같은 집합조직을 갖는 판재를 상온에서 각각 RD 방 향, 45° 방향 및 TD 방향으로 인장변형하였을 때, Fig. 2와 같이 RD 방향 및 45° 방향으로의 인장에 서 연신율이 크게 나타나는 이유는 RD 방향 또는 45° 방향으로의 인장에서는 주 슬립계에 근접한 슬립 계가 작용하기 때문이다.

AZ31B Mg합금 판재의 어닐링 온도에 따른 미세

Fig. 2. Stress-strain curves of as-received AZ31B Mg sheet with tensile direction: (a) RD, (b) 45° and (c) TD directions.

조직의 변화를 관찰하기 위하여 Ar분위기의 관상로 를 이용하여 200~450°C 온도구간에서 각각 30분간 유지한 후 미세조직의 변화를 조사하였으며 그 결과 는 Fig. 3과 같다.

200°C × 30 min 어닐링한 Fig. 3의 (a)를 보면 3 ~5 µm 내외의 결정립들이 비교적 고르게 분포되어

Fig. 3. Optical micrographs of AZ31B Mg sheet with annealing temperature; (a) $200^{\circ}C \times 30 \text{ min}$, (b) $300^{\circ}C \times 30 \text{ min}$, (c) $400^{\circ}C \times 30 \text{ min}$ and (d) $450^{\circ}C \times 30 \text{ min}$.

있음을 알 수 있으며, 300°C × 30 min 어닐링에 의 해서도 Fig. 3의 (b)와 같이 결정립 성장은 일어나 지 않으며 평균 결정립 크기는 거의 큰 변화를 나 타내지 않는다. 그러나 400°C × 30 min 어닐링한 Fig. 3의 (c)에서는 평균 결정립 크기가 10 μm 내외 로 결정립이 성장한 구역과 결정립 크기가 100 μm 이상으로 크게 성장한 구역을 관찰할 수 있었으며, 450°C × 30 min 어닐링에서는 Fig. 3의 (d)에서와 같이 대부분의 결정립들이 크게 성장한 이상 결정립 성장(Abnormal grain growth) 현상[4]을 관찰할 수 있었다.

Fig. 3의 (c) 및 (d) 에서와 같이 어널렁에 의해 나타나는 이상 결정립성장 현상은 가공에 의해 변형 집합조직이 발달하거나 석출물이 존재하게 되면 나타 나는 것으로 보고[10, 11]되고 있다. 즉 집합조직 또는 석출물에 의해 결정립 성장에 특정한 방항관계 를 갖는 결정립들이 존재함으로써, 이러한 결정립들 의 우선적인 결정럽계 이동(Migration)에 의한 결정 립들의 합체에 의해 이상 결정립 성장이 일어난다. 본 실험에 사용된 AZ31B Mg 합금 판재에서는 기 지 내에 석출물이 존재하지 않기 때문에, Fig. 3의 (c) 및 (d)에서 나타나는 일부 결정립의 이상 결정립 성장은 판재 가공시의 변형 스트레인의 불균일한 분 포에 의한 특정한 결정립의 우선적인 성장에 기인하 기 때문이다.

한편 Fig. 4는 450°C × 30 min 어닐링한 AZ31B Mg합금 판재의 (0001) 및 (1010) 극점도를 나타낸 것으로서 as-received 상태와 비교하면 (0001) 극점 은 큰 차이를 나타내지 않았다. 그러나 (1010) 극점 의 위치는 크게 변하지 않으나 강도는 매우 낮아지 며 동시에 (1010) 극점도의 중앙에서 강도가 큰 (1010) 극점들이 관찰되었으며 이는 이상 성장한 결 정립에 의한 것으로 판단된다.

3.3 어닐링 온도에 따른 기계적 성질 변화

Fig. 5는 200~450°C 온도구간에서 각각 30분간 유지한 판재의 어닐링 온도에 따른 비커어스 경도값 의 변화를 나타낸다. As-received 판재의 경우 HV = 59이었으며 200°C 및 300°C 어닐링에 의해서도 HV = 58로 경도값은 크게 변하지 않았다. 그러나 400°C 및 450°C 어닐링에 의해서는 각각 HV = 53 및 HV = 48로 경도값은 급격히 저하하였다.

한편 Fig. 6은 200~450°C에서 어닐링한 판재에 대하여 압연방향으로 인장시편을 채취하여 인장시험

$(10\bar{1}0)$

Fig. 4. (0001) and ($10\overline{1}0$) pole figures of as-received AZ31B Mg sheet after annealing at 450° C \times 30 min.

에 의해 구한 응력-변형률곡선을 나타낸다. Asreceived 상태에서 항복응력 및 연신률은 각각 25.9 kgf/mm² 및 25.8%이었으나 어닐링에 의해 항복응력 과 함께 연신률 역시 감소하는 경향을 나타냈다. 즉 200°C 및 300°C 어닐링에 의해 항복응력은 각각 16.5 kgf/mm² 및 13.3 kgf/mm², 연신률은 각각

Fig. 5. Change in Vickers hardness values of AZ31B Mg sheet with annealing temperature.

Fig. 6. Stress-strain curves of as-received AZ31B Mg sheet with annealing temperature.

25.6% 및 15.9%이었으며 특히 어닐링온도가 400°C 및 450°C로 상승함에 따라 즉 이상 결정립 성장이 일어남에 따라 항복응력은 각각 8.8 kgf/mm²및 4.6 kgf/mm²로 감소하였으며 연신률 역시 15.9% 및 15.8%로 급격히 감소하였다.

또한 모든 시편에서 가공경화률은 크지 않았으며 이는 상온 변형에서 슬립계가 주로 기저면으로 제한 되어 있는 hcp 결정구조를 갖는 합금의 응력-변형률 곡선의 특징을 나타낸다. 그러나 이러한 가공경화률 은 400°C 및 450°C의 어닐링에 의해 이상 결정립 성장이 일어난 판재에서는 미세 결정립을 갖는 판재 에 비해 상대적으로 증가하는 것으로 나타나는데 이 러한 이유는 조대한 결정립에서는 다중 슬립계가 작 용하기 때문이다[9].

Fig. 7. FESEM fractographs of AZ31B Mg sheet with annealing temperature; (a) as-received, (b) 200° C, (c) 300° C,(d) 400° C and (e) 450° C.

Fig. 7은 Fig. 6의 인장변형한 시편들의 인장 파단 면을 나타낸 파단면 사진으로서 결정립 크기가 작은 즉 어닐링 온도가 낮은 시편에서는 미세한 딤풀들을 관할 수 있었으나 어닐링 온도가 상승함에 따라 딤 풀의 크기는 커지고 동시에 입계파괴 양상으로 변하 였다.

4. 결 론

시판 중인 AZ31B Mg 합금 판재의 온간 프레스 성형시 성형온도의 변화에 따른 성형성에 대한 기초자 료를 제공하고자 AZ31B Mg 합금 판재를 200°C~ 450°C 온도구간에서 어닐링하여 어닐링 온도에 따른 미세조직, 집합조직 및 인장성질의 변화 등에 대하여 조사하여 다음과 같은 결론을 얻었다.

1. 상용 AZ31B Mg 합금 판재에서 (0001) ± 5° [2130] 저면 집합조직이 발달하였으며, 이러한 집합 조직은 어닐링에 의해 큰 변화를 나타내지 않았으나 압연면에 대해서 강도가 큰 (1010) 극점들이 관찰되 었으며 이는 이상 성장한 결정립에 의한 것으로 판 단된다.

2. 압연방향, TD 방향 및 45° 방향으로 인장시험 한 결과 항복강도 및 최대인장강도 값은 큰 차이를 나타내지 않았으나 연신율은 RD 방향, 45° 방향 및 TD 방향 순으로 각각 25.8, 21.4 및 11.9%이었다.

3. AZ31B Mg 합금 판재는 어널링 온도가 상승함 에 따라 결정립은 성장하여 결정립 크기는 증가하는 경향을 나타냈다. 특히 판재는 400°C × 30 min 및 450°C × 30 min 어닐링에서 일부 결정립이 비정상적 으로 크게 성장하는 이상 결정립 성장(Abnormal grain growth)현상을 나타냈다.

4. 어닐링온도에 따른 인장성질을 측정한 결과 asreceived 상태에서 항복응력 및 연신률은 각각 25.9 kgf/mm² 및 25.8%이었으나 어닐링 온도가 상 승함에 따라 항복응력과 함께 연신률 역시 감소하는 경향을 나타냈으며 특히 400°C 이상의 어닐링에 의 해 그 감소폭은 매우 크게 나타났다.

후 기

본 연구는 2002년도 조선대학교 학술연구비 지원 에 의하여 수행되었으며 이에 감사드립니다.

참고문헌

1. Y. Kojima, T. Aizawa, S. Kamado and K. Higashi :

Mater. Sci. Forum, 419-422 (2003) 3.

- 2. H. Kaufmann and P. J. Uggowitzer : Advanced Eng. Mater., **3** (2001) 963.
- 3. H. Kaufmann, R. Potzinger, S. Kleiner and P. J. Uggowitzer : Magnesium Industry, **7** (2002) 23.
- C. W. Su, L. Lu and M. O. Lai : Philosophical Magazine, 88 (2008) 181.
- 5. T. Mukai, M. Yamanoi, H. Watanabe and K. Higashi : Scripta Mater., 45 (2001) 89.
- K. Iwanaga, H. Tashiro, H.Okamoto and K. Shimizu : Mater. Processing Tech., 155-156 (2004) 1313.
- S. R. Agnew, J. A. Horton, T. M. Lillo and D. W. Brown : Scripta Mater., 50 (2004) 377.
- S. H. Kim, B. S. You, C. D. Yim and Y. M. Seo : Mater. Letters, 59 (2005) 3876.
- R. W. K. Honeycombe : The Plastic Deformation of Metals, Edward Arnold, London (1984) 114.
- R. D. Doherty, D. A. Hughes and F. J. Humphreys : Mater. Sci. Eng., A238 (1997) 219.
- F. J. Humphreys and M. Hatherly: *Recrystaallization* and *Related Annealing Phenomena*, Pergamon, Oxford (1995) 314.