References
- M. Basarir, and O. Sonalcan, On some double sequence spaces, J. Indian Acad. Math., 21(2)(1999), 193-200.
- Bromwich T.J.IA. : An Introduction to the Theory of Infinite Series, MacMillan and Co.Ltd., New york 1965.
- A. Esi, Some new sequence spaces defined by Orlicz functions, Bull. Inst. Math. Acad. Sinica., 27(1)(1999),71-76.
- A. Esi and M. Et, Some new sequence spaces defined by a sequence of Orlicz functions, Indian J. Pure. Appl. Math., 31(8)(2000), 967-972.
- M. Et, On some new Orlicz sequence spaces, J. Analysis, 9(2001), 21-28.
- G. H. Hardy, On the convergence of certain multiple series, Proc. Camb. Phil. Soc., 19(1917), 86-95.
- P. K. Kamthan and M. Gupta, Sequence Spaces and Series, Marcel Dekker, 1980.
- H. Kizmaz, On certain sequence spaces, Canad. Math. Bull., 24(1981), 169 -176. https://doi.org/10.4153/CMB-1981-027-5
- M. A. Krasnoselkii and Y. B. Rutitsky, Convex function and Orlicz Spaces, Groningen, Netherlands, 1961.
- J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10(1971), 379-390. https://doi.org/10.1007/BF02771656
- I. J. Maddox, Spaces of strongly summable sequences, Quart. Jour. Math.(Oxford 2nd Ser), 18(72)(1976), 345-355.
- F. Moricz, Extension of the spaces c and c0 from single to double sequences, Acta. Math., Hungerica., 57(1-2)(1991), 129-136. https://doi.org/10.1007/BF01903811
- F. Moricz and B. E. Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, Math. Proc. Camb. Phil. Soc., 104(1988), 283-294. https://doi.org/10.1017/S0305004100065464
- H. Nakano, Modular sequence spaces, Proc. Japan Acad., 27(1951), 508-512. https://doi.org/10.3792/pja/1195571225
-
S. Simons, The sequence spaces
$ℓ(p_{nu})\;and\;m(p_{\nu})$ , Proc. London Math. Soc., 15(3)(1965), 422-436. https://doi.org/10.1112/plms/s3-15.1.422 - B. C. Tripathy, Generalized difference paranormed statistically convergent sequences defined by Orlicz function in a locally convex spaces, Soochow J. Math., 30(4)(2004), 431-446.
- B. C. Tripathy, Statistically convergent double sequences, Tamkang Jour. Math., 34(3)(2003), 231-237.
- B. C. Tripathy and B. Sarma, Statistically convergent double sequence spaces defined by Orlicz functions, Soochow J. Math., 32(2)(2006), 211-221.
- A. Zygumd, Trigonometric Series, vol II, Cambridge, 1993.
Cited by
- On the class of λ-statistically convergent difference sequences of fuzzy numbers vol.16, pp.6, 2012, https://doi.org/10.1007/s00500-011-0800-6
- The spectrum of the operator $$ D( r,0, s,0,t)$$ D ( r , 0 , s , 0 , t ) over the sequence spaces $$\ell _{p}$$ ℓ p and $$bv_{p}$$ b v p vol.26, pp.5-6, 2015, https://doi.org/10.1007/s13370-014-0268-5
- On I-Convergent Double Sequences of Fuzzy Real Numbers vol.52, pp.2, 2012, https://doi.org/10.5666/KMJ.2012.52.2.189
- On Some New Generalized Di erence Statistically Convergen Sequence Spaces De ned by a Sequence of Orlicz Function vol.50, pp.3, 2010, https://doi.org/10.5666/KMJ.2010.50.3.389
- The Spectrum of the Opertator D(r, 0, 0, s) over the Sequence Spaces c0and c vol.53, pp.2, 2013, https://doi.org/10.5666/KMJ.2013.53.2.247
- Sequence Spaces of Fuzzy Real Numbers Using Fuzzy Metric vol.54, pp.1, 2014, https://doi.org/10.5666/KMJ.2014.54.1.11
- On Some Lacunary Generalized Difference Sequence Spaces of Invariant Means De ned by a Sequence of Modulus Function vol.51, pp.4, 2011, https://doi.org/10.5666/KMJ.2011.51.4.385
- The Spectrum of the OperatorD(r,0,s,0,t)over the Sequence Spacesc0andc vol.2013, 2013, https://doi.org/10.1155/2013/430965