References
- D. D. Bainov and E. Minchev, Oscillation of the solutions of impulsive parabolic equations, J. Comput. Appl. Math., 69(1996), 207-214. https://doi.org/10.1016/0377-0427(95)00040-2
- C. Cui, M. Zou, A. Liu and L. Xiao, Oscillation of nonlinear impulsive parbolic differential equations with several delays, Ann. of Diff. Eqs., 21(1)(2005), 1-7.
- T. Ding, Asymptotic behavior of solution of some retarded differential equations, Scientia Sinica(A), 25(4) (1982), 363-370.
- L. H. Erbe, H. I. Freedman, X. Liu and J. H.Wu, Comparison principles for impulsive parabolic equations with applications to models of single species growth, J. Austral. Math. Soc. Ser. B32(1991), 382-400.
- X. Fu, L. Shiau, Oscillation criteria for impulsive parabolic boundary value problem with delay,Applied Mathematics and Computation, 153(2004), 587-599. https://doi.org/10.1016/S0096-3003(03)00659-3
- X. Fu, X. Liu and S. Sivaloganathan, Oscillation criteria for impulsive parabolic differential equations with delay, J. Math. Anal. Appl., 268(2002), 647-664. https://doi.org/10.1006/jmaa.2001.7840
- X. Fu, B. Q. Yan and Y. S. Liu, Introduction to impulsive differential systems(in Chinese), Science Press, Beijing, 2005.
- W. Gao and J. Wang, Estimates of solutions of impulsive parabolic equations under Neumann boundary condition, J. Math. Anal. Appl., 283(2003), 478-490. https://doi.org/10.1016/S0022-247X(03)00275-0
- M. Kirane and Y. V. Rogovchenko, Comparison results for systems of impulse parabolic equations with applications to population dynamics, Nonlinear Anal. TMA., 28(2)(1997), 263-276. https://doi.org/10.1016/0362-546X(95)00159-S
- Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, New York, 1993.
- M. R. S. Kulenovic, G. Ladas and A. Meimaridou, On oscillation of nonlinear delay differential equations. Quarterly Of Applied Mathematics, XLV(1)(1987), 155-164.
- W. Li, On the forced oscillation of solutions for systems of impulsive parabolic differential equations with several delays, J. Comput. Appl. Math., 181(2005), 46-57. https://doi.org/10.1016/j.cam.2004.11.016
- W. Li ,M. Han and F. Meng, Necessary and sufficient conditions for oscillation of impulsive parabolic differential equations with delays, Applied Mathematics Letters, 18(2005), 1149-1155. https://doi.org/10.1016/j.aml.2005.01.001
- M. C. Mackey and L. Glass, Oscillation and chaos in physiological control system, Science, 197(1977), 287-289. https://doi.org/10.1126/science.267326
- R. Redlinger. Exitence theorems for Semiliner parabolic Systems with Functional, Nonlinear Anal. TMA., 8(1984), 667-682. https://doi.org/10.1016/0362-546X(84)90011-7
- R. Redlinger, On Volterra's population equation with diffusion, SIAM J. Math. Anal., 16(1985), 135-142. https://doi.org/10.1137/0516008
- S. H. Saker, Oscillation and global attractivity in hematopoiesis model with delay time, Applied Mathematics and Computation, 136(2003), 241-250. https://doi.org/10.1016/S0096-3003(02)00035-8
- O. O. Struk and V. I. Tkachenko, On impulsive lotka-volterra systems with diffusion, Ukrainian Mathematical Journal, 54(4)(2002), 629-646. https://doi.org/10.1023/A:1021039528818
- J. R. Yan and Ch. Kou, Oscillation of Solutions of Impulsive Delay Differential Equations, J. Math. Anal. Appl., 254(2001), 358-370. https://doi.org/10.1006/jmaa.2000.7112
- Y. Yang, J. W. -H. So, Dynamics for the diffusive Nicholson blowflies equation, in: Proceedings of the International Conference on Dynamical Systems and Differential Equations, held in Springfield, Missouri, USA, May 29-June 1, 1996.
Cited by
- Complex Dynamic Behaviors of an Impulsively Controlled Predator-prey System with Watt-type Functional Response vol.56, pp.3, 2016, https://doi.org/10.5666/KMJ.2016.56.3.831