Residual P-Finiteness of Certain Generalized Free Products of Nilpotent Groups

Goansu Kim
Department of Mathematics, Yeungnam University, Kyongsan, 712-749, Korea
e-mail: gskim@yu.ac.kr
Youngmi Lee
Department of Mathematics, Yeungnam University, Kyungsan, 712-749, Korea
e-mail: dianthus@yumail.ac.kr
James McCarron
Waterloo Maple, Inc. Waterloo, Ontario, Canada N2L 3G1
e-mail: jmccarro@maplesoft.com

Abstract. We show that free products of finitely generated and residually p-finite nilpotent groups, amalgamating p-closed central subgroups are residually p-finite. As a consequence, we are able to show that generalized free products of residually p-finite abelian groups are residually p-finite if the amalgamated subgroup is closed in the pro-p topology on each of the factors.

1. Introduction

A generalized free product of two finite p-groups need not be residually a finite p-group. (Here, and in the sequel, p is a prime number.) However, Higman [4] showed that if the amalgamated subgroup is cyclic, then the generalized free product of two finite p-groups is residually a finite p-group. Higman's result was subsequently extended to generalized free products of residually p-finite groups [5], [6], [8] where the amalgamated subgroups are cyclic.

In this paper, we consider again the generalized free product of residually p finite groups, using a somewhat different approach than was used in [5], [6]. We introduce the idea of a p-filter, which enables us to develop criteria for generalized free products to be residually p-finite. We then apply these criteria to obtain a number of new results identifying residually p-finite generalized free products. In particular, generalized free products in which the amalgamated subgroup is normal or cyclic are considered. For example, a free product of finitely generated and

Received January 22, 2008.
2000 Mathematics Subject Classification: 20E26, 20E06, 20 F05.
Key words and phrases: generalized free products, residually finite p-groups, p-closed subgroups, p-filters.

The first author was supported by the Yeungnam University research grants in 2002.
residually p-finite nilpotent groups, amalgamating a p-closed central subgroup is shown to be residually a finite p-group. As a consequence, we are able to show that a generalized free product of residually p-finite abelian groups is residually a finite p-group if the amalgamated subgroup is closed in the pro- p topology on each of the factors.

The main tool used in our results is the notion of a " p-filter". These are defined, and a number of technical results concerning them developed, in Section 3.

2. Preliminaries

Definition 2.1. A group G is said to be residually a finite p-group $(\mathcal{R} \mathcal{F} p)$ if, for each $1 \neq x \in G$, there exists a normal subgroup N of p-power index in $G\left(N \triangleleft_{p} G\right)$ such that $x \notin N$.

If H is a subgroup of G, we denote by $\operatorname{Aut}_{G}(H)$ the image, in the automorphism group of H, of the normalizer of H in G, under the natural homomorphism into Aut (H). The following result of G. Higman will be important throughout this paper.

Theorem 2.2([4]). Let $G=A *_{H} B$, where A and B are finite p-groups.
(1) If H is cyclic, then G is $\mathcal{R} \mathcal{F} p$.
(2) If H is normal, both in A and in B, then G is $\mathcal{R} \mathcal{F} p$ if, and only if, $\operatorname{Aut}_{A}(H)$ and $\operatorname{Aut}_{B}(H)$ generate a p-subgroup of $\operatorname{Aut}(H)$.

Higman's theorem (1) has a several consequences in [2], [5], [6]. If $H \leq Z(A)$ then $\operatorname{Aut}_{A}(H)=1$. Hence the following is an easy consequence of (2).
Proposition 2.3([7]). Let $G=A *_{H} B$, where A and B are finite p-groups. If $H \leq Z(A)$ and $H \triangleleft B$ then G is $\mathcal{R} \mathcal{F} p$.

Definition 2.4. Let G be a group. A subgroup H of G is p-closed in G if, for each $g \in G \backslash H$, there exists $N \triangleleft_{p} G$ such that $g \notin N H$. In particular, $\{1\}$ is p-closed in G iff G is $\mathcal{R} \mathcal{F} p$.

Let A be $\mathcal{R} \mathcal{F} p$. Corollary 3.5 in [5] shows that $A *_{H} A$ is $\mathcal{R} \mathcal{F} p$ if, and only if, H is p-closed in A. Thus p-closedness plays an important role in the study of the residually finite p-group property of generalized free products.

Theorem 2.5. Let $G=A *_{H} B$, where $H \leq Z(B)$ and $A \neq H \neq B$. If G is $\mathcal{R} \mathcal{F} p$, then H is p-closed in A.
Proof. Let $a \in A \backslash H$. Choose $b \in B \backslash H$. Then $[a, b] \neq 1$. Since G is $\mathcal{R} \mathcal{F} p$, there exists $N \triangleleft_{p} G$ such that $[a, b] \notin N$. This implies $a \notin N H$, since $H \leq Z(B)$. Hence $a \notin(N \cap A) H$ and $N \cap A \triangleleft_{p} A$. Thus H is p-closed in A.

Every element of finite order in a $\mathcal{R F} p$ group has a p-power order. The converse of this fact holds for finitely generated nilpotent groups.

Proposition 2.6([1],[3]). Let A be finitely generated nilpotent. Then A is $\mathcal{R} \mathcal{F} p$ if,
and only if, the torsion subgroup of A is a finite p-group.
Corollary 2.7. Let G be a finitely generated nilpotent group and $H \triangleleft G$. If H is a finite p-subgroup of G and G / H is $\mathcal{R} \mathcal{F}$ p, then G is $\mathcal{R} \mathcal{F} p$.

3. p-filters

Definition 3.1. Let $G=A *_{H} B$. Let $\Lambda=\left\{\left(M_{i}, N_{i}\right) \mid i \in I\right\}$ be a non-empty family of pairs $\left(M_{i}, N_{i}\right)$, where $M_{i} \triangleleft A$ and $N_{i} \triangleleft B$, satisfying the following:
(F1) $M_{i} \cap H=N_{i} \cap H$ for each $i \in I$;
(F2) For each $i \in I, A / M_{i} *_{\bar{H}} B / N_{i}$ is $\mathcal{R} \mathcal{F} p$, where $\bar{H}=H M_{i} / M_{i} \simeq H N_{i} / N_{i}$;
(F3) For each $i_{1}, i_{2}, \cdots, i_{n} \in I$ and $n \in \mathbb{Z}^{+},\left(\cap_{k=1}^{n} M_{i_{k}}, \cap_{k=1}^{n} N_{i_{k}}\right) \in \Lambda$;
(F4) $\cap_{i \in I} M_{i} H=H=\cap_{i \in I} N_{i} H$.
Such Λ is called a p-filter of generalized free product $G=A *_{H} B$.
In the following lemmas, we find some p-filters of generalized free products.
Lemma 3.2. Let A and B be $\mathcal{R} \mathcal{F} p$ and let $G=A{ }_{\langle\langle c\rangle} B$, where $|c|<\infty$. Then

$$
\Lambda=\left\{(M, N) \mid M \triangleleft_{p} A, N \triangleleft_{p} B \text { such that } M \cap\langle c\rangle=1=N \cap\langle c\rangle\right\}
$$

is a p-filter of $G=A *{ }_{\langle c\rangle} B$.
Proof. Since every element of finite order in a $\mathcal{R} \mathcal{F} p$ group has a p-power order, let $|c|=p^{\alpha}$ for some α. For each $0<i<p^{\alpha}$, there exists $M_{i} \triangleleft_{p} A$ such that $c^{i} \notin M_{i}$. Let $M=\cap M_{i}$. Then $M \triangleleft_{p} A$ and $\langle c\rangle \cap M=1$. Similarly, there exists $N \triangleleft_{p} B$ such that $\langle c\rangle \cap N=1$. Thus $(M, N) \in \Lambda$ and $\Lambda \neq \varnothing$.

By Theorem 2.2, $A / M *_{\langle\bar{c}\rangle} B / N$ is $\mathcal{R F} p$ for each $(M, N) \in \Lambda$. Hence (F2) holds. To show (F4), let $a \in A \backslash\langle c\rangle$. Then $a c^{-i} \neq 1$, for all $0 \leq i<p^{\alpha}$. Since A is $\mathcal{R} \mathcal{F} p$, there exists $M \triangleleft_{p} A$ such that $a c^{-i} \notin M$ for all i and $\langle c\rangle \cap M=1$. Then $a \notin M\langle c\rangle$. Similarly, there exists $N \triangleleft_{p} B$ such that $a \notin N\langle c\rangle$ and $\langle c\rangle \cap N=1$. Then $(M, N) \in \Lambda$ and $a \notin \cap_{(M, N) \in \Lambda} M\langle c\rangle$. Hence $\langle c\rangle \supseteq \cap_{(M, N) \in \Lambda} M\langle c\rangle$. Thus $\cap_{(M, N) \in \Lambda} M\langle c\rangle=\langle c\rangle$. Similarly, $\cap_{(M, N) \in \Lambda} N\langle c\rangle=\langle c\rangle$. Thus (F4) holds. Since (F1) and (F3) are trivial, Λ is a p-filter of $G=A *{ }_{\langle c\rangle} B$.
Lemma 3.3. Let $G=A *{ }_{\langle c\rangle} B$, where A, B are $\mathcal{R} \mathcal{F} p$ and $|c|=\infty$. If $\langle c\rangle$ is p-closed in both A and B, then

$$
\Lambda=\left\{(M, N) \mid M \triangleleft_{p} A, N \triangleleft_{p} B \text { such that } M \cap\langle c\rangle=N \cap\langle c\rangle\right\}
$$

is a p-filter of G.
Proof. We note that $\Lambda \neq \varnothing$, since $(A, B) \in \Lambda$. For $(M, N) \in \Lambda, A / M *\langle\bar{c}\rangle B / N$ is $\mathcal{R F} p$ by Theorem 2.2. Thus (F2) holds. Let $a \in A \backslash\langle c\rangle$. Since $\langle c\rangle$ is p-closed in A, there exists $M \triangleleft_{p} A$ such that $a \notin M\langle c\rangle$. Let $M \cap\langle c\rangle=\left\langle c^{p^{n}}\right\rangle$ for some n. By Corollary 2.3 [5], there exists $N \triangleleft_{p} B$ such that $N \cap\langle c\rangle=\left\langle c^{p^{n}}\right\rangle$. Therefore $(M, N) \in \Lambda$. Since $a \notin M\langle c\rangle, a \notin \cap_{(M, N) \in \Lambda} M\langle c\rangle$. Hence $\cap_{(M, N) \in \Lambda} M\langle c\rangle \subseteq\langle c\rangle$. Thus $\cap_{(M, N) \in \Lambda} M\langle c\rangle=\langle c\rangle$. Similarly, $\cap_{(M, N) \in \Lambda} N\langle c\rangle=\langle c\rangle$. Thus (F4) holds. Since
(F1) and (F3) is trivial, Λ is a p-filter of $G=A *\langle c\rangle B$.
Lemma 3.4. Let A and B be $\mathcal{R \mathcal { F } p}$ and H be normal in both A and B. If A / H and B / H are $\mathcal{R F}$ p, then $\Lambda=\{(H, H)\}$ is a p-filter of $G=A *_{H} B$.
Proof. Since A / H and B / H are $\mathcal{R} \mathcal{F} p, A / H * B / H$ is $\mathcal{R} \mathcal{F} p$. Clearly (F1), (F3) and (F4) hold. Hence $\{(H, H)\}$ is a p-filter of $G=A *_{H} B$.

Remark 3.5. Let Λ be a p-filter of $G=A *_{H} B$. Then, for each $x \notin H$, there exists $N \triangleleft_{p} G$ such that $x \notin N$.
Proof. Clearly $\|x\| \geq 1$. We only consider the case $x=a_{1} b_{1} \cdots a_{n} b_{n}$, where $a_{i} \in A \backslash H$ and $b_{i} \in B \backslash H$, since the other cases are similar. By (F4), for each $1 \leq s \leq n$, there exists $\left(M_{i_{s}}, N_{i_{s}}\right) \in \Lambda$ such that $a_{s} \notin M_{i_{s}} H$. Similarly, there exists $\left(M_{i_{s}}^{\prime}, N_{i_{s}}^{\prime}\right) \in \Lambda$ such that $b_{s} \notin N_{i_{s}}^{\prime} H$ for each $1 \leq s \leq n$. Let $M=\cap_{s=1}^{n}\left(M_{i_{s}} \cap M_{i_{s}}^{\prime}\right)$ and $N=\cap_{s=1}^{n}\left(N_{i_{s}} \cap N_{i_{s}}^{\prime}\right)$. Then $(M, N) \in \Lambda$ by (F3) and $M \cap H=N \cap H$ by (F1). Let $\bar{G}=\bar{A} *_{\bar{H}} \bar{B}$, where $\bar{A}=A / M, \bar{B}=B / N$ and $\bar{H}=H M / M \simeq H N / N$. Then $\|\bar{x}\|=\|x\| \geq 1$. Hence $\bar{x} \neq 1$. Since \bar{G} is $\mathcal{R F} p$ by (F2), there exists $\bar{N} \triangleleft_{p} \bar{G}$ such that $\bar{x} \notin \bar{N}$. Let N be the preimage of \bar{N} in G. Then $N \triangleleft_{p} G$ and $x \notin N$ as required.

Theorem 3.6. Let Λ be a p-filter of $G=A *_{H} B$. If, for each $1 \neq x \in H$, there exists $(M, N) \in \Lambda$ such that $x \notin M$, then G is $\mathcal{R} \mathcal{F} p$.
Proof. Let $1 \neq x \in G$. If $x \notin H$ then, by Remark 3.5, there exists $N \triangleleft_{p} G$ such that $x \notin N$. Thus, let $1 \neq x \in H$ and suppose $x \notin M$ for some $(M, N) \in \Lambda$. Let $\bar{G}=A / M *_{\bar{H}} B / N$, as before. Then $\bar{x} \neq 1$. Since \bar{G} is $\mathcal{R} \mathcal{F} p$ by (F2), we can find $N \triangleleft_{p} G$ such that $x \notin N$. Hence G is $\mathcal{R} \mathcal{F} p$.

The following is a generalization of Theorem 2.2.
Corollary 3.7([5, Theorem 4.3]). If A and B are $\mathcal{R} \mathcal{F} p$ and $|c|<\infty$, then $G=$ $A{ }_{\langle c c\rangle} B$ is $\mathcal{R F} p$.
Proof. By Lemma 3.2, $\Lambda=\left\{(M, N) \mid M \triangleleft_{p} A, N \triangleleft_{p} B\right.$ such that $M \cap\langle c\rangle=1=$ $N \cap\langle c\rangle\}$ is a p-filter of $G=A *\langle c\rangle B$. Let $1 \neq x \in\langle c\rangle$. As in the proof of Lemma 3.2 , there exists $(M, N) \in \Lambda$ such that $x \notin M$. Hence, by Theorem 3.6, G is $\mathcal{R} \mathcal{F} p$.

The following is a main result in [5]. We shall prove it using Theorem 3.6.
Corollary 3.8([5, Theorem 4.2]). If A and B are $\mathcal{R F} p$ and $\langle c\rangle$ is p-closed in both A and B, then $G=A *_{\langle c\rangle} B$ is $\mathcal{R} \mathcal{F} p$.
Proof. By Lemma 3.3, $\Lambda=\left\{(M, N) \mid M \triangleleft_{p} A, N \triangleleft_{p} B\right.$ such that $\left.M_{n} \cap\langle c\rangle=N \cap\langle c\rangle\right\}$ is a p-filter of G. To use Theorem 3.6, let $1 \neq x \in\langle c\rangle$. Then $x \notin\left\langle c^{p^{n}}\right\rangle$ for some n. By Corollary 2.3 [5], there exist $M \triangleleft_{p} A$ and $N \triangleleft_{p} B$ such that $M \cap\langle c\rangle=\left\langle c^{p^{n}}\right\rangle=N \cap\langle c\rangle$. Hence $(M, N) \in \Lambda$ and $x \notin M$. Thus, by Theorem 3.6, G is $\mathcal{R} \mathcal{F} p$.

4. Main results

In this section, we shall show that certain generalized free products of $\mathcal{R} \mathcal{F} p$ groups, amalgamating a normal subgroup, are $\mathcal{R} \mathcal{F} p$. The following is easy to see.

Proposition 4.1. Let $H \triangleleft A$. Then H is p-closed in A if, and only if, A / H is $\mathcal{R F} p$.

By using Proposition 2.6 and 4.1, we have:
Corollary 4.2. Let A be finitely generated nilpotent and $H \triangleleft A$. Then the following are equivalent:
(1) H is p-closed in A.
(2) A / H is $\mathcal{R F} p$.
(3) The torsion subgroup of A / H is a finite p-group.

Theorem 4.3. Let A and B be finite p-groups and H be normal in both A and B. If, for each $1 \neq x \in H$, there exists a normal subgroup D of both A and B such that $x \notin D$ and $D \leq H$, where H / D is cyclic, then $G=A *_{H} B$ is $\mathcal{R} \mathcal{F} p$.
Proof. By Lemma 3.4, $\Lambda=\{(H, H)\}$ is a p-filter of $G=A *_{H} B$. Let $1 \neq x \in G$. If $x \notin H$ then, by Remark 3.5, there exists $N \triangleleft_{p} G$ such that $x \notin N$. If $1 \neq x \in H$ then, by assumption, there exists a normal subgroup D of both A and B such that $x \notin D, D \leq H$, and H / D is cyclic. Let $\bar{G}=A / D *_{\bar{H}} B / D$ where $\bar{H}=H / D$ is cyclic. Since A / D and B / D are finite p-groups, \bar{G} is $\mathcal{R} \mathcal{F} p$ by Theorem 2.2. Since $x \notin D, \bar{x} \neq 1$. Hence there exists $\bar{N} \triangleleft_{p} \bar{G}$ such that $\bar{x} \notin \bar{N}$. Let N be the preimage of \bar{N} in G. Then $N \triangleleft_{p} G$ and $x \notin N$. Hence G is $\mathcal{R} \mathcal{F} p$.

The following example explains why we need the normal subgroup D of both A and B in the theorem above.

Example 4.4 ([5, Example 2.5]). Let $A_{i}=\left\langle x_{i}, y_{i} \mid x_{i}^{4}, y_{i}^{2},\left(x_{i} y_{i}\right)^{2}\right\rangle$, for $i=1,2$. Then the generalized free product $A_{1} \underset{H}{*} A_{2}$, where $H=\left\langle x_{1}^{2}, y_{1}\right\rangle \simeq\left\langle y_{2}, x_{2}^{2}\right\rangle$, of A_{1} and A_{2} amalgamating $x_{1}^{2}=y_{2}$ and $y_{1}=x_{2}^{2}$ is not $\mathcal{R} \mathcal{F}_{2}$ [5]. Moreover A_{1}, A_{2} are finite 2-groups of order 8 and $H=\left\langle x_{1}^{2}, y_{1}\right\rangle$ is order 4 . Thus H is normal in both A_{1} and A_{2}. Clearly $1 \neq x_{1}^{2} \in H$. Note that H has nontrivial subgroups $\left\langle x_{1}^{2}\right\rangle,\left\langle y_{1}\right\rangle,\left\langle x_{1}^{2} y_{1}\right\rangle$. But $\left\langle y_{1}\right\rangle,\left\langle x_{1}^{2} y_{1}\right\rangle$ are not normal in A_{1}. Therefore, there is no $D \leq H$ such that $D \triangleleft A_{1}, x_{1}^{2} \notin D$ and H / D is cyclic.
Theorem 4.5. Let A and B be $\mathcal{R} \mathcal{F} p$ and H be normal in both A and B. Suppose that H is p-closed in A and B. If, for each $1 \neq x \in H$, there exist $M \triangleleft_{p} A$ and $N \triangleleft_{p} B$ such that $M \cap H=N \cap H, x \notin M$ and $H M / M$ is cyclic, then $A *_{H} B$ is $\mathcal{R F} p$.
Proof. Let $1 \neq x \in G$. Since H is a p-closed normal subgroup of $A, A / H$ is $\mathcal{R F} p$ by Proposition 4.1. Similarly B / H is $\mathcal{R} \mathcal{F} p$. Hence, by Lemma 3.4, $\{(H, H)\}$ is a p-filter of $G=A *_{H} B$. If $x \notin H$ then, by Remark 3.5, there exists $N \triangleleft_{p} G$ such that $x \notin N$. Thus, suppose $1 \neq x \in H$. By assumption, there exist $M \triangleleft_{p} A$ and $N \triangleleft_{p} B$ such that $M \cap H=N \cap H, x \notin M$ and $H M / M$ is cyclic. Let $\bar{G}=A / M *_{\bar{H}} B / N$, where $\bar{H}=H M / M$. Then, by Theorem $2.2, \bar{G}$ is $\mathcal{R} \mathcal{F} p$ and $1 \neq \bar{x} \in \bar{G}$. Hence, as
usual, we can find $N \triangleleft_{p} G$ and $x \notin N$. Hence G is $\mathcal{R} \mathcal{F} p$.
Theorem 4.6. Let A and B be $\mathcal{R} \mathcal{F} p$ and H be normal in both A and B. Suppose that H is p-closed in A and B. If, for each $1 \neq x \in H$, there exists a normal subgroup D of A and B such that $x \notin D$ and $D \subset H, A / D$ and B / D are $\mathcal{R} \mathcal{F} p$ and H / D is cyclic, then $A *_{H} B$ is $\mathcal{R} \mathcal{F} p$.
Proof. As before, we consider $1 \neq x \in H$. By assumption, there exists a normal subgroup D of A and B such that $x \notin D$ and $D \subset H, A / D$ and B / D are $\mathcal{R} \mathcal{F} p$ and H / D is cyclic. Let $\bar{G}=\bar{A} *_{\bar{H}} \bar{B}$, where $\bar{A}=A / D, \bar{B}=B / D$ and $\bar{H}=H / D$. Since H is p-closed in A and B, it is not difficult to see that \bar{H} is p-closed in \bar{A} and \bar{B}. This follows from Corollary 3.8 that \bar{G} is $\mathcal{R} \mathcal{F} p$. Since $1 \neq \bar{x} \in \bar{H}$, we can find $\bar{N} \triangleleft_{p} \bar{G}$ such that $\bar{x} \notin \bar{N}$. Let N be the preimage of \bar{N} in G. Then $N \triangleleft_{p} G$ and $x \notin N$. Hence G is $\mathcal{R} \mathcal{F} p$.
Corollary 4.7. Let A and B be finitely generated nilpotent, $\mathcal{R} \mathcal{F} p$ groups. Let H be p-closed in both A and B such that $H \leq Z(A) \cap Z(B)$. Then $G=A *_{H} B$ is $\mathcal{R} \mathcal{F} p$.
Proof. To apply Theorem 4.6, let $1 \neq g \in H$. Since H is finitely generated abelian and $\mathcal{R F} p, H \simeq \mathbb{Z}_{p^{r_{1}}} \times \cdots \times \mathbb{Z}_{p^{r_{s}}} \times \mathbb{Z} \times \cdots \times \mathbb{Z}$. Since $1 \neq g \in H$, we consider $g=\left(a_{1}, \cdots, a_{s}, a_{s+1}, \cdots, a_{n}\right)$ and $a_{i} \neq 0$ for some i. If $a_{1} \neq 0$ (similarly, $a_{k} \neq 0$ for $2 \leq k \leq s$), let $D=\{0\} \times \mathbb{Z}_{p^{r_{2}}} \times \cdots \times \mathbb{Z}_{p^{r_{s}}} \times \mathbb{Z} \times \cdots \times \mathbb{Z}$. Then $H / D \simeq \mathbb{Z}_{p^{r_{1}}}$ is cyclic and $x \notin D$. If $a_{s+1} \neq 0$ (similarly, $a_{k} \neq 0$ for $s+2 \leq k \leq n$), then $a_{s+1} \notin p^{\alpha} \mathbb{Z}$ for some α. Let $D=\mathbb{Z}_{p^{r_{1}}} \times \cdots \times \mathbb{Z}_{p^{r_{s}}} \times p^{\alpha} \mathbb{Z} \times \mathbb{Z} \times \cdots \times \mathbb{Z}$. Then $H / D \simeq \mathbb{Z}_{p^{\alpha}}$ is cyclic and $x \notin D$. Now, A / D is finitely generated nilpotent and H / D is a finite p-subgroup of A / D and $(A / D) /(H / D) \simeq A / H$. Since H is p-closed in A, by Proposition 4.1, A / H is $\mathcal{R} \mathcal{F} p$. Hence, A / D is $\mathcal{R} \mathcal{F} p$ by Corollary 2.7. Similarly, B / D is $\mathcal{R F} p$. Therefore, by Theorem 4.6, G is $\mathcal{R} \mathcal{F} p$.

Combining Theorem 4.7, Theorem 2.5 and Corollary 4.2, we have
Corollary 4.8. Let A and B be finitely generated abelian, $\mathcal{R F} \mathcal{F}$ groups, and let H be a proper subgroup of both A and B. The the following are equivalent.

1. $A *_{H} B$ is $\mathcal{R} \mathcal{F} p$;
2. H is p-closed in both A and B; and,
3. the torsion subgroups of A / H and B / H are p-groups.

The following improves Corollary 4.7.
Theorem 4.9. Let A and B be $\mathcal{R} \mathcal{F} p$ groups, where A is finitely generated nilpotent. Let H be p-closed in both A and B such that $H \leq Z(A)$ and $H \triangleleft B$. Then $G=A *_{H} B$ is $\mathcal{R F}$ p.
Proof. Let $1 \neq g \in G$. As in the proof of Theorem 4.5, we suppose $1 \neq g \in H$. Since B is $\mathcal{R} \mathcal{F} p$, there exists $M \triangleleft_{\underline{p}} B$ such that $g \notin M$. Then $M \cap H \triangleleft_{p} H$ and $M \cap H \triangleleft A$, since $H \leq Z(A)$. Let $\bar{A}=A /(M \cap H)$. Then \bar{H} is a finite p-group and $\bar{A} / \bar{H} \cong A / H$ is $\mathcal{R} \mathcal{F} p$. This follows from Corollary 2.7 that \bar{A} is $\mathcal{R} \mathcal{F} p$. Hence there
exists $\bar{N} \triangleleft_{p} \bar{A}$ such that $\bar{N} \cap \bar{H}=1$. Let N be the preimage of \bar{N} in A. Then $N \triangleleft_{p} A$ and $N \cap H=M \cap H$. Let $\bar{G}=A / N *_{\bar{H}} B / M$. By Proposition 2.3, \bar{G} is $\mathcal{R} \mathcal{F} p$ and $\bar{g} \neq 1$. Hence we can find $\bar{S} \triangleleft_{p} \bar{G}$ such that $\bar{g} \notin \bar{S}$. Let S be the preimage of \bar{S} in G. Then $S \triangleleft_{p} G$ and $g \notin S$, as required. Hence G is $\mathcal{R} \mathcal{F} p$.

We can apply this to certain tree products amalgamating a single subgroup.
Theorem 4.10. Let $I=\{1,2, \cdots, n\}$, where $n \geq 2$. Suppose each $A_{i}(i \in I)$ is a finitely generated nilpotent, $\mathcal{R \mathcal { F } p}$ group. Let $H \leq Z\left(A_{i}\right)$ and $H \neq A_{i}$ for all $i \in I$. Let G be the generalized free product $*_{H} A_{i}$ of $A_{i}(i \in I)$ amalgamating a single subgroup H. Then G is $\mathcal{R} \mathcal{F} p$ if, and only if, H is p-closed in each A_{i} if, and only if, the torsion subgroup of each A_{i} / H is a finite p-group.
Proof. Suppose H is p-closed in each A_{i}. Let $G_{i+1}=G_{i} *_{H} A_{i+1}$. Inductively we show that G_{i+1} is $\mathcal{R F} p$ assuming that G_{i} is $\mathcal{R} \mathcal{F} p$. Clearly $H \triangleleft G_{i}$, in fact, $H \leq Z\left(G_{i}\right)$. Since G_{i} / H is a free product of $\mathcal{R} \mathcal{F} p$ groups $A_{1} / H, \cdots, A_{i} / H, G_{i} / H$ is $\mathcal{R} \mathcal{F} p$. Hence H is p-closed in G_{i} by Proposition 4.1. Thus, by Theorem 4.9, G_{i+1} is $\mathcal{R F} p$. Therefore $G=G_{n}$ is $\mathcal{R F} p$.

Conversely, suppose G is $\mathcal{R} \mathcal{F} p$. Since its subgroup $A_{i} *_{H} A_{i+1}$ is also $\mathcal{R F} p$, by Theorem 2.5, H is p-closed in A_{i}.

Combining Theorem 4.10, Theorem 2.5 and Corollary 4.2, we have
Theorem 4.11. Let $I=\{1,2, \cdots, n\}$, where $n \geq 2$. Suppose each $A_{i}(i \in I)$ is a finitely generated abelian, $\mathcal{R} \mathcal{F} p$ group. Let G be the generalized free product $*_{H} A_{i}$ of $A_{i}(i \in I)$ amalgamating a single subgroup H. Then G is $\mathcal{R F} p$ if, and only if, H is p-closed in each A_{i} if, and only if, the torsion subgroup of each A_{i} / H is a finite p-group.

Finally we note that the condition " p-closed" in Theorem 4.11 can not be eliminated because of the following simple example.
Example 4.12. Note that $\left\langle x^{n}\right\rangle$ is a p-closed subgroup of $\langle x\rangle$ if and only if $n=p^{\alpha}$ for some α. Hence $\left\langle a^{2}\right\rangle$ is a 2-closed subgroup of $\langle a\rangle$ and $\left\langle b^{3}\right\rangle$ is not a 2 -closed subgroup of $\langle b\rangle$. Then $\langle a\rangle{ }_{a^{2}=b^{3}}^{*}\langle b\rangle$ is not $\mathcal{R} \mathcal{F}_{2}$. In fact, $\langle a\rangle \underset{a^{2}=b^{3}}{*}\langle b\rangle$ is not $\mathcal{R} \mathcal{F} p$ for any prime p.

References

[1] G. Baumslag,. Lecture notes on nilpotent groups, C. B. M. S. Regional Conf. Ser. in Math., Amer. Math. Soc. No. 2., (1971)
[2] D. Doniz. Residual properties of free products of infinitely many nilpotent groups amalgamating cycles, J. Algebra, 179(1996), 930-935.
[3] K. W. Gruenberg. Residual properties of infinite soluble groups, Proc. London Math. Soc., (3), 7(1957), 29-62.
[4] G. Higman. Amalgams of p-groups, J. Algebra, 1(1964), 301-305.
[5] G. Kim and J. McCarron. On amalgamated free products of residually p-finite groups, J. Algebra, 162(1)(1993), 1-11.
[6] G. Kim and C. Y. Tang. On generalized free products of residually p-finite groups, J. Algebra, 201(1998), 317-327.
[7] J. McCarron. Residual nilpotence and one relator groups, PhD thesis, University of Waterloo, Canada, (1995).
[8] P. C. Wong and C. K. Tang. Tree products of residually p-finite groups, Algebra Colloq., 2(3)(1995), 209-212.

