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ABSTRACT. We show that free products of finitely generated and residually p-finite nilpo-
tent groups, amalgamating p-closed central subgroups are residually p-finite. As a conse-
quence, we are able to show that generalized free products of residually p-finite abelian
groups are residually p-finite if the amalgamated subgroup is closed in the pro-p topology
on each of the factors.

1. Introduction

A generalized free product of two finite p-groups need not be residually a fi-
nite p-group. (Here, and in the sequel, p is a prime number.) However, Higman
[4] showed that if the amalgamated subgroup is cyclic, then the generalized free
product of two finite p-groups is residually a finite p-group. Higman’s result was
subsequently extended to generalized free products of residually p-finite groups [5],
[6], [8] where the amalgamated subgroups are cyclic.

In this paper, we consider again the generalized free product of residually p-
finite groups, using a somewhat different approach than was used in [5], [6]. We
introduce the idea of a p-filter, which enables us to develop criteria for generalized
free products to be residually p-finite. We then apply these criteria to obtain a
number of new results identifying residually p-finite generalized free products. In
particular, generalized free products in which the amalgamated subgroup is normal
or cyclic are considered. For example, a free product of finitely generated and
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residually p-finite nilpotent groups, amalgamating a p-closed central subgroup is
shown to be residually a finite p-group. As a consequence, we are able to show that
a generalized free product of residually p-finite abelian groups is residually a finite
p-group if the amalgamated subgroup is closed in the pro-p topology on each of the
factors.

The main tool used in our results is the notion of a “p-filter”. These are defined,
and a number of technical results concerning them developed, in Section 3.

2. Preliminaries

Definition 2.1. A group G is said to be residually a finite p-group (RFp) if, for
each 1 # x € G, there exists a normal subgroup N of p-power index in G (N <, G)
such that x ¢ N.

If H is a subgroup of G, we denote by Aute(H) the image, in the automorphism
group of H, of the normalizer of H in G, under the natural homomorphism into
Aut(H). The following result of G. Higman will be important throughout this

paper.

Theorem 2.2([4]). Let G = A xy B, where A and B are finite p-groups.

(1) If H is cyclic, then G is RFp.

(2) If H is normal, both in A and in B, then G is RFp if, and only if, Aut(H)
and Autp(H) generate a p-subgroup of Aut(H).

Higman’s theorem (1) has a several consequences in [2], [5], [6]. If H < Z(A)
then Auta(H) = 1. Hence the following is an easy consequence of (2).

Proposition 2.3([7]). Let G = A xy B, where A and B are finite p-groups. If
H < Z(A) and H < B then G is RFp.

Definition 2.4. Let G be a group. A subgroup H of G is p-closed in G if, for each
g € G\ H, there exists N <, G such that g ¢ NH. In particular, {1} is p-closed in
G iff G is RFp.

Let A be RFp. Corollary 3.5 in [5] shows that A xg A is RFp if, and only if,
H is p-closed in A. Thus p-closedness plays an important role in the study of the
residually finite p-group property of generalized free products.

Theorem 2.5. Let G = Axpy B, where H < Z(B) and A # H # B. If G is RFp,
then H is p-closed in A.

Proof. Let a € A\ H. Choose b € B\ H. Then [a,b] # 1. Since G is RFp, there
exists N <, G such that [a,b] ¢ N. This implies a ¢ NH, since H < Z(B). Hence
a¢ (NNA)H and NN A<y, A. Thus H is p-closed in A. O

Every element of finite order in a RFp group has a p-power order. The converse
of this fact holds for finitely generated nilpotent groups.

Proposition 2.6([1],[3]). Let A be finitely generated nilpotent. Then A is RFp if,
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and only if, the torsion subgroup of A is a finite p-group.

Corollary 2.7. Let G be a finitely generated nilpotent group and H < G. If H is
a finite p-subgroup of G and G/H is RFp, then G is RFp.

3. p-filters

Definition 3.1. Let G = Axy B. Let A = {(M;,N;) | i € I} be a non-empty
family of pairs (M;, N;), where M; << A and N; < B, satisfying the following:
(F1) M;NH = N; N H for each i € I
(F2) For each i € I, A/M; *z B/N; is RFp, where H = HM;/M; ~ HN;/N;;
(F3) For each 41,49, -+ ,i, € I and n € ZT, (N{_; M;,,N2_N;,) € A;
(F4) NierM;H = H = NierN;H.
Such A is called a p-filter of generalized free product G = A xy B.

In the following lemmas, we find some p-filters of generalized free products.

Lemma 3.2. Let A and B be RFp and let G = A x o B, where |c| < co. Then
A={(M,N)|M<,A, N<,B suchthat MN{c)=1=NnN(c)}

is a p-filter of G = A B.
Proof. Since every element of finite order in a RFp group has a p-power order, let
|c| = p® for some a. For each 0 < i < p®, there exists M; <, A such that ¢ ¢ M;.
Let M = NM;. Then M <, A and (¢) N M = 1. Similarly, there exists N <, B such
that (¢) "N = 1. Thus (M,N) € A and A # @.

By Theorem 2.2, A/M *y B/N is RFp for each (M, N) € A. Hence (F2) holds.
To show (F4), let a € A\ (¢). Then ac™* # 1, for all 0 < i < p®. Since A is RFp,
there exists M <1, A such that ac™* & M for all i and (c) "M = 1. Then a & M(c).
Similarly, there exists N <i, B such that a ¢ N(c) and (¢)NN = 1. Then (M,N) € A
and a & Near,nyeaM(c). Hence (c) 2 N, nyeaM(c). Thus N nyeaM(c) = (c).
Similarly, N(az,nyeaN{(c) = (c). Thus (F4) holds. Since (F1) and (F3) are trivial,
A is a p-ilter of G = A .y B. a

Lemma 3.3. Let G = Ax(y B, where A, B are RFp and |c¢| = oc. If {c) is p-closed
i both A and B, then

A={(M,N)| M <, A, N<,B such that M N{c)=NnN(c)}

s a p-filter of G.

Proof. We note that A # @, since (A,B) € A. For (M,N) € A, A/M %z B/N
is RFp by Theorem 2.2. Thus (F2) holds. Let a € A\ {c¢). Since {c) is p-closed
in A, there exists M <, A such that a ¢ M{c). Let M N {c) = (c?") for some n.
By Corollary 2.3 [5], there exists N <1, B such that N N {c) = (c?"). Therefore
(M,N) € A. Since a ¢ M{c), a & Nu,nyeaM(c). Hence N nyeaM{c) C ().
Thus N(ar,nyeaM(c) = (c). Similarly, Nas,xyeaN(c) = (c). Thus (F4) holds. Since
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(F1) and (F3) is trivial, A is a p-filter of G = A x(.y B. O

Lemma 3.4. Let A and B be RFp and H be normal in both A and B. If A/H
and B/H are RFp, then A = {(H,H)} is a p-filter of G = Ay B.

Proof. Since A/H and B/H are RFp, A/H « B/H is RFp. Clearly (F1), (F3) and
(F4) hold. Hence {(H, H)} is a p-filter of G = A *xy B. O

Remark 3.5. Let A be a p-filter of G = A xy B. Then, for each x ¢ H, there
exists NV <, G such that z € N.

Proof. Clearly ||z|| > 1. We only consider the case © = a1b; ---anb,, where
a; € A\ H and b; € B\ H, since the other cases are similar. By (F4), for each
1 < s < n, there exists (M;_, N;,) € A such that a; ¢ M;_ H. Similarly, there exists
(M, ,N; ) € A such that by ¢ N; H for each 1 < s <n. Let M = n"_, (M;, N M, )
and N = N?_;(N;, N N; ). Then (M,N) € A by (F3) and M N H = NN H by
(F1). Let G = Az B, where A= A/M, B = B/N and H = HM/M ~ HN/N.
Then ||Z|| = ||z|| > 1. Hence T # 1. Since G is RFp by (F2), there exists N <, G
such that 7 ¢ N. Let N be the preimage of N in G. Then N <1, G and z € N as
required. (I

Theorem 3.6. Let A be a p-filter of G = A xyg B. If, for each 1 # x € H, there
exists (M,N) € A such that x & M, then G is RFp.

Proof. Let 1 # x € G. If v ¢ H then, by Remark 3.5, there exists N <, G such
that ¢ N. Thus, let 1 # 2 € H and suppose ¢ M for some (M,N) € A. Let
G = A/M +z B/N, as before. Then T # 1. Since G is RFp by (F2), we can find
N <, G such that € N. Hence G is RFp. O

The following is a generalization of Theorem 2.2.

Corollary 3.7([5, Theorem 4.3]). If A and B are RFp and |c| < oo, then G =
A *(c) B is pr

Proof. By Lemma 3.2, A = {(M,N) | M <, A,N <, B such that M N (c) =1 =
NN {c)} is a p-filter of G = A%y B. Let 1 # 2 € (c). As in the proof of Lemma
3.2, there exists (M, N) € A such that x ¢ M. Hence, by Theorem 3.6, G is RFp.
O

The following is a main result in [5]. We shall prove it using Theorem 3.6.
Corollary 3.8([5, Theorem 4.2]). If A and B are RFp and {c) is p-closed in both
A and B, then G = A% B is RFp.

Proof. By Lemma 3.3, A = {(M,N) | M <, A, N <1, B such that M N{(c) = NN{c)}
is a p-filter of G. To use Theorem 3.6, let 1 # x € (c). Thena & (c") for some n. By
Corollary 2.3 [5], there exist M <1, A and N <1, B such that MnN{c) = (c?") = NN{c).
Hence (M,N) € A and x € M. Thus, by Theorem 3.6, G is RFp. O

4. Main results
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In this section, we shall show that certain generalized free products of RFp
groups, amalgamating a normal subgroup, are RFp. The following is easy to see.

Proposition 4.1. Let H << A. Then H is p-closed in A if, and only if, A/H is
RFp.

By using Proposition 2.6 and 4.1, we have:

Corollary 4.2. Let A be finitely generated nilpotent and H <<A. Then the following
are equivalent:

(1) H is p-closed in A.

(2) A/H is RFp.

(3) The torsion subgroup of AJ/H is a finite p-group.

Theorem 4.3. Let A and B be finite p-groups and H be normal in both A and B.
If, for each 1 # x € H, there exists a normal subgroup D of both A and B such that
x & D and D < H, where H/D s cyclic, then G = Axyg B is RFp.

Proof. By Lemma 3.4, A = {(H,H)} is a p-filter of G = A*yg B. Let 1 # z € G.
If x ¢ H then, by Remark 3.5, there exists N <1, G such that t ¢ N. If 1 #x € H
then, by assumption, there exists a normal subgroup D of both A and B such that
x ¢ D, D < H, and H/D is cyclic. Let G = A/D x5 B/D where H = H/D is
cyclic. Since A/D and B/D are finite p-groups, G is RFp by Theorem 2.2. Since
x ¢ D, T # 1. Hence there exists N <, G such that T ¢ N. Let N be the preimage
of Nin G. Then N <1, G and = € N. Hence G is RFp. (]

The following example explains why we need the normal subgroup D of both A
and B in the theorem above.

Example 4.4 ([5, Example 2.5]). Let A; = (z;,v; | 24,92, (ziy:)°), for i = 1,2.
Then the generalized free product A; * Ay, where H = (22,y1) ~ (y2,23), of Ay

and A, amalgamating 22 = yo and y; = 3 is not RF, [5]. Moreover A;, A,
are finite 2-groups of order 8 and H = (2% y;) is order 4. Thus H is normal in
both A; and A,. Clearly 1 # 22 € H. Note that H has nontrivial subgroups
(%), (y1), (x3y1). But (1), (x}y1) are not normal in A;. Therefore, there is no
D < H such that D <1 Ay, 22 ¢ D and H/D is cyclic.

Theorem 4.5. Let A and B be RFp and H be normal in both A and B. Suppose
that H is p-closed in A and B. If, for each 1 # x € H, there exist M <, A and
N <, B such that MNH =NNH, x ¢ M and HM/M s cyclic, then A xy B is
RFp.

Proof. Let 1 # x € G. Since H is a p-closed normal subgroup of A, A/H is RFp
by Proposition 4.1. Similarly B/H is RFp. Hence, by Lemma 3.4, {(H,H)} is a
p-filter of G = Axy B. If x ¢ H then, by Remark 3.5, there exists N <1, G such that
x ¢ N. Thus, suppose 1 # xz € H. By assumption, there exist M <, A and N <1, B
such that MNH =NNH, x ¢ M and HM/M is cyclic. Let G = A/M *7 B/N,
where H = HM /M. Then, by Theorem 2.2, G is RFp and 1 # 7 € G. Hence, as
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usual, we can find N <1, G and ¢ N. Hence G is RFp. (]

Theorem 4.6. Let A and B be RFp and H be normal in both A and B. Suppose
that H is p-closed in A and B. If, for each 1 # x € H, there exists a normal
subgroup D of A and B such that x ¢ D and D C H, A/D and B/D are RFp and
H/D is cyclic, then A xpg B is RFp.

Proof. As before, we consider 1 # x € H. By assumption, there exists a normal
subgroup D of A and B such that « ¢ D and D C H, A/D and B/D are RFp
and H/D is cyclic. Let G = A x5 B, where A= A/D, B= B/D and H = H/D.
Since H is p-closed in A and B, it is not difficult to see that H is p-closed in A and
B. This follows from Corollary 3.8 that G is RFp. Since 1 # 7 € H, we can find
N <, G such that T ¢ N. Let N be the preimage of N in G. Then N <, G and
x ¢ N. Hence G is RFp. ]

Corollary 4.7. Let A and B be finitely generated nilpotent, RFp groups. Let H be
p-closed in both A and B such that H < Z(A)NZ(B). Then G = Axy B is RFp.

Proof. To apply Theorem 4.6, let 1 £ g € H. Since H is finitely generated abelian
and RFp, H o~ Zpri X - X Lprs X L X --- X Z. Since 1 # g € H, we consider
g = (a1, -+ ,as,a6541, - ,a,) and a; # 0 for some i. If a; # 0 (similarly, ax # 0
for 2 <k <s),let D ={0} X Zpra X -+ X Lprs XL X -+ xZ. Then H/D =~ Zpn
is cyclic and ¢ D. If agy; # 0 (similarly, ax # 0 for s + 2 < k < n), then
as+1 & p*Z for some o. Let D = Zpry X -+ X Lprs X p*Z X Z X -+ X Z. Then
H/D ~ Z,o is cyclic and ¢ D. Now, A/D is finitely generated nilpotent and H/D
is a finite p-subgroup of A/D and (A/D)/(H/D) ~ A/H. Since H is p-closed in A,
by Proposition 4.1, A/H is RFp. Hence, A/D is RFp by Corollary 2.7. Similarly,
B/D is RFp. Therefore, by Theorem 4.6, G is RFp. ]

Combining Theorem 4.7, Theorem 2.5 and Corollary 4.2, we have

Corollary 4.8. Let A and B be finitely generated abelian, RFp groups, and let H
be a proper subgroup of both A and B. The the following are equivalent.

1. Axyg B is RFp;
2. H is p-closed in both A and B; and,
3. the torsion subgroups of A/H and B/H are p-groups.

The following improves Corollary 4.7.

Theorem 4.9. Let A and B be RFp groups, where A is finitely generated nilpotent.
Let H be p-closed in both A and B such that H < Z(A) and H<AB. Then G = Axy B
is RFp.

Proof. Let 1 # g € GG. As in the proof of Theorem 4.5, we suppose 1 # g € H.
Since B is RFp, there exists M <1,B such that ¢ ¢ M. Then M N H <, H and
MNH<A, since H< Z(A). Let A= A/(M N H). Then H is a finite p-group and
A/H = A/H is RFp. This follows from Corollary 2.7 that A is RFp. Hence there
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exists N<I,A such that NN H = 1. Let N be the preimage of N in A. Then N<,A
and NNH =MnNH. Let G = A/N %5 B/M. By Proposition 2.3, G is RFp and
g # 1. Hence we can find S<1,G such that g ¢ S. Let S be the preimage of S in G.
Then S<,G and g € S, as required. Hence G is RFDp. O

We can apply this to certain tree products amalgamating a single subgroup.

Theorem 4.10. Let I = {1,2,--- ,n}, where n > 2. Suppose each A; (i € I) is a
finitely generated nilpotent, RFp group. Let H < Z(A;) and H # A; for all i € I.
Let G be the generalized free product xgA; of A; (i € I) amalgamating a single
subgroup H. Then G is RFp if, and only if, H is p-closed in each A; if, and only
if, the torsion subgroup of each A;/H is a finite p-group.

Proof. Suppose H is p-closed in each A;. Let G411 = G; *g A;y1. Inductively
we show that G;11 is RFp assuming that G; is RFp. Clearly H < G;, in fact,
H < Z(G;). Since G;/H is a free product of RFp groups A;/H,--- ,A;/H, G;/H
is RFp. Hence H is p-closed in G; by Proposition 4.1. Thus, by Theorem 4.9, G;41
is RFp. Therefore G = G,, is RFp.

Conversely, suppose G is RFp. Since its subgroup A; xg A; 11 is also RFp, by
Theorem 2.5, H is p-closed in A;. O

Combining Theorem 4.10, Theorem 2.5 and Corollary 4.2, we have

Theorem 4.11. Let I = {1,2,--- ,n}, where n > 2. Suppose each A; (i € I) is a
finitely generated abelian, RFp group. Let G be the generalized free product g A;
of A; (i € I) amalgamating a single subgroup H. Then G is RFp if, and only if, H
is p-closed in each A; if, and only if, the torsion subgroup of each A;/H is a finite
p-group.

Finally we note that the condition“p-closed” in Theorem 4.11 can not be elim-
inated because of the following simple example.

(o3

Example 4.12. Note that (z™) is a p-closed subgroup of (x) if and only if n = p
for some «. Hence (a?) is a 2-closed subgroup of (a) and (b3) is not a 2-closed
subgroup of (b). Then {(a) s (b) is not RF3. In fact, (a) * \ (b) is not RFp for

a‘“= a?=b

any prime p.
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