KYUNGPOOK Math. J. 48(2008), 495-502

Residual P-Finiteness of Certain Generalized Free Products of Nilpotent Groups

Goansu Kim

Department of Mathematics, Yeungnam University, Kyongsan, 712-749, Korea e-mail: gskim@yu.ac.kr

Youngmi Lee

Department of Mathematics, Yeungnam University, Kyungsan, 712-749, Korea e-mail: dianthus@yumail.ac.kr

JAMES MCCARRON Waterloo Maple, Inc. Waterloo, Ontario, Canada N2L 3G1 e-mail: jmccarro@maplesoft.com

ABSTRACT. We show that free products of finitely generated and residually *p*-finite nilpotent groups, amalgamating *p*-closed central subgroups are residually *p*-finite. As a consequence, we are able to show that generalized free products of residually *p*-finite abelian groups are residually *p*-finite if the amalgamated subgroup is closed in the pro-*p* topology on each of the factors.

1. Introduction

A generalized free product of two finite *p*-groups need not be residually a finite *p*-group. (Here, and in the sequel, *p* is a prime number.) However, Higman [4] showed that if the amalgamated subgroup is cyclic, then the generalized free product of two finite *p*-groups is residually a finite *p*-group. Higman's result was subsequently extended to generalized free products of residually *p*-finite groups [5], [6], [8] where the amalgamated subgroups are cyclic.

In this paper, we consider again the generalized free product of residually p-finite groups, using a somewhat different approach than was used in [5], [6]. We introduce the idea of a p-filter, which enables us to develop criteria for generalized free products to be residually p-finite. We then apply these criteria to obtain a number of new results identifying residually p-finite generalized free products. In particular, generalized free products in which the amalgamated subgroup is normal or cyclic are considered. For example, a free product of finitely generated and

Received January 22, 2008.

²⁰⁰⁰ Mathematics Subject Classification: 20E26, 20E06, 20F05.

Key words and phrases: generalized free products, residually finite p-groups, p-closed subgroups, p-filters.

The first author was supported by the Yeungnam University research grants in 2002.

⁴⁹⁵

residually *p*-finite nilpotent groups, amalgamating a *p*-closed central subgroup is shown to be residually a finite *p*-group. As a consequence, we are able to show that a generalized free product of residually *p*-finite abelian groups is residually a finite *p*-group if the amalgamated subgroup is closed in the pro-*p* topology on each of the factors.

The main tool used in our results is the notion of a "*p*-filter". These are defined, and a number of technical results concerning them developed, in Section 3.

2. Preliminaries

Definition 2.1. A group G is said to be *residually a finite p-group* $(\mathcal{RF}p)$ if, for each $1 \neq x \in G$, there exists a normal subgroup N of p-power index in G $(N \triangleleft_p G)$ such that $x \notin N$.

If H is a subgroup of G, we denote by $\operatorname{Aut}_G(H)$ the image, in the automorphism group of H, of the normalizer of H in G, under the natural homomorphism into $\operatorname{Aut}(H)$. The following result of G. Higman will be important throughout this paper.

Theorem 2.2([4]). Let $G = A *_H B$, where A and B are finite p-groups. (1) If H is cyclic, then G is \mathcal{RFp} .

(2) If H is normal, both in A and in B, then G is \mathcal{RFp} if, and only if, $\operatorname{Aut}_A(H)$ and $\operatorname{Aut}_B(H)$ generate a p-subgroup of $\operatorname{Aut}(H)$.

Higman's theorem (1) has a several consequences in [2], [5], [6]. If $H \leq Z(A)$ then $Aut_A(H) = 1$. Hence the following is an easy consequence of (2).

Proposition 2.3([7]). Let $G = A *_H B$, where A and B are finite p-groups. If $H \leq Z(A)$ and $H \triangleleft B$ then G is \mathcal{RFp} .

Definition 2.4. Let G be a group. A subgroup H of G is *p*-closed in G if, for each $g \in G \setminus H$, there exists $N \triangleleft_p G$ such that $g \notin NH$. In particular, $\{1\}$ is *p*-closed in G iff G is \mathcal{RFp} .

Let A be \mathcal{RFp} . Corollary 3.5 in [5] shows that $A *_H A$ is \mathcal{RFp} if, and only if, H is p-closed in A. Thus p-closedness plays an important role in the study of the residually finite p-group property of generalized free products.

Theorem 2.5. Let $G = A *_H B$, where $H \leq Z(B)$ and $A \neq H \neq B$. If G is \mathcal{RFp} , then H is p-closed in A.

Proof. Let $a \in A \setminus H$. Choose $b \in B \setminus H$. Then $[a, b] \neq 1$. Since G is $\mathcal{RF}p$, there exists $N \triangleleft_p G$ such that $[a, b] \notin N$. This implies $a \notin NH$, since $H \leq Z(B)$. Hence $a \notin (N \cap A)H$ and $N \cap A \triangleleft_p A$. Thus H is p-closed in A.

Every element of finite order in a $\mathcal{RF}p$ group has a *p*-power order. The converse of this fact holds for finitely generated nilpotent groups.

Proposition 2.6([1],[3]). Let A be finitely generated nilpotent. Then A is $\mathcal{RF}p$ if,

and only if, the torsion subgroup of A is a finite p-group.

Corollary 2.7. Let G be a finitely generated nilpotent group and $H \triangleleft G$. If H is a finite p-subgroup of G and G/H is \mathcal{RFp} , then G is \mathcal{RFp} .

3. *p*-filters

Definition 3.1. Let $G = A *_H B$. Let $\Lambda = \{(M_i, N_i) \mid i \in I\}$ be a non-empty family of pairs (M_i, N_i) , where $M_i \triangleleft A$ and $N_i \triangleleft B$, satisfying the following:

(F1) $M_i \cap H = N_i \cap H$ for each $i \in I$;

(F2) For each $i \in I$, $A/M_i *_{\overline{H}} B/N_i$ is $\mathcal{RF}p$, where $\overline{H} = HM_i/M_i \simeq HN_i/N_i$;

(F3) For each $i_1, i_2, \cdots, i_n \in I$ and $n \in \mathbb{Z}^+$, $(\bigcap_{k=1}^n M_{i_k}, \bigcap_{k=1}^n N_{i_k}) \in \Lambda$;

 $(F4) \cap_{i \in I} M_i H = H = \cap_{i \in I} N_i H.$

Such Λ is called a *p*-filter of generalized free product $G = A *_H B$.

In the following lemmas, we find some p-filters of generalized free products.

Lemma 3.2. Let A and B be $\mathcal{RF}p$ and let $G = A *_{\langle c \rangle} B$, where $|c| < \infty$. Then

 $\Lambda = \{ (M, N) \mid M \triangleleft_p A, N \triangleleft_p B \text{ such that } M \cap \langle c \rangle = 1 = N \cap \langle c \rangle \}$

is a p-filter of $G = A *_{\langle c \rangle} B$.

Proof. Since every element of finite order in a $\mathcal{RF}p$ group has a *p*-power order, let $|c| = p^{\alpha}$ for some α . For each $0 < i < p^{\alpha}$, there exists $M_i \triangleleft_p A$ such that $c^i \notin M_i$. Let $M = \cap M_i$. Then $M \triangleleft_p A$ and $\langle c \rangle \cap M = 1$. Similarly, there exists $N \triangleleft_p B$ such that $\langle c \rangle \cap N = 1$. Thus $(M, N) \in \Lambda$ and $\Lambda \neq \emptyset$.

By Theorem 2.2, $A/M *_{\langle \overline{c} \rangle} B/N$ is $\mathcal{RF}p$ for each $(M, N) \in \Lambda$. Hence (F2) holds. To show (F4), let $a \in A \setminus \langle c \rangle$. Then $ac^{-i} \neq 1$, for all $0 \leq i < p^{\alpha}$. Since A is $\mathcal{RF}p$, there exists $M \triangleleft_p A$ such that $ac^{-i} \notin M$ for all i and $\langle c \rangle \cap M = 1$. Then $a \notin M \langle c \rangle$. Similarly, there exists $N \triangleleft_p B$ such that $a \notin N \langle c \rangle$ and $\langle c \rangle \cap N = 1$. Then $(M, N) \in \Lambda$ and $a \notin \cap_{(M,N)\in\Lambda} M \langle c \rangle$. Hence $\langle c \rangle \supseteq \cap_{(M,N)\in\Lambda} M \langle c \rangle$. Thus $\cap_{(M,N)\in\Lambda} M \langle c \rangle = \langle c \rangle$. Similarly, $\cap_{(M,N)\in\Lambda} N \langle c \rangle = \langle c \rangle$. Thus (F4) holds. Since (F1) and (F3) are trivial, Λ is a p-filter of $G = A *_{\langle c \rangle} B$.

Lemma 3.3. Let $G = A *_{\langle c \rangle} B$, where A, B are $\mathcal{RF}p$ and $|c| = \infty$. If $\langle c \rangle$ is p-closed in both A and B, then

$$\Lambda = \{ (M, N) \mid M \triangleleft_p A, N \triangleleft_p B \text{ such that } M \cap \langle c \rangle = N \cap \langle c \rangle \}$$

is a p-filter of G.

Proof. We note that $\Lambda \neq \emptyset$, since $(A, B) \in \Lambda$. For $(M, N) \in \Lambda$, $A/M *_{\langle \overline{c} \rangle} B/N$ is $\mathcal{RF}p$ by Theorem 2.2. Thus (F2) holds. Let $a \in A \setminus \langle c \rangle$. Since $\langle c \rangle$ is p-closed in A, there exists $M \triangleleft_p A$ such that $a \notin M \langle c \rangle$. Let $M \cap \langle c \rangle = \langle c^{p^n} \rangle$ for some n. By Corollary 2.3 [5], there exists $N \triangleleft_p B$ such that $N \cap \langle c \rangle = \langle c^{p^n} \rangle$. Therefore $(M, N) \in \Lambda$. Since $a \notin M \langle c \rangle$, $a \notin \cap_{(M,N) \in \Lambda} M \langle c \rangle$. Hence $\cap_{(M,N) \in \Lambda} M \langle c \rangle \subseteq \langle c \rangle$. Thus $\cap_{(M,N) \in \Lambda} M \langle c \rangle = \langle c \rangle$. Similarly, $\cap_{(M,N) \in \Lambda} N \langle c \rangle = \langle c \rangle$. Thus (F4) holds. Since

Kim, Lee, and McCarron

(F1) and (F3) is trivial, Λ is a *p*-filter of $G = A *_{\langle c \rangle} B$.

Lemma 3.4. Let A and B be \mathcal{RFp} and H be normal in both A and B. If A/H and B/H are \mathcal{RFp} , then $\Lambda = \{(H, H)\}$ is a p-filter of $G = A *_H B$.

Proof. Since A/H and B/H are $\mathcal{RF}p$, A/H * B/H is $\mathcal{RF}p$. Clearly (F1), (F3) and (F4) hold. Hence $\{(H, H)\}$ is a *p*-filter of $G = A *_H B$.

Remark 3.5. Let Λ be a *p*-filter of $G = A *_H B$. Then, for each $x \notin H$, there exists $N \triangleleft_p G$ such that $x \notin N$.

Proof. Clearly $||x|| \geq 1$. We only consider the case $x = a_1b_1 \cdots a_nb_n$, where $a_i \in A \setminus H$ and $b_i \in B \setminus H$, since the other cases are similar. By (F4), for each $1 \leq s \leq n$, there exists $(M_{i_s}, N_{i_s}) \in \Lambda$ such that $a_s \notin M_{i_s}H$. Similarly, there exists $(M'_{i_s}, N'_{i_s}) \in \Lambda$ such that $b_s \notin N'_{i_s}H$ for each $1 \leq s \leq n$. Let $M = \bigcap_{s=1}^n (M_{i_s} \cap M'_{i_s})$ and $N = \bigcap_{s=1}^n (N_{i_s} \cap N'_{i_s})$. Then $(M, N) \in \Lambda$ by (F3) and $M \cap H = N \cap H$ by (F1). Let $\overline{G} = \overline{A} *_{\overline{H}} \overline{B}$, where $\overline{A} = A/M$, $\overline{B} = B/N$ and $\overline{H} = HM/M \simeq HN/N$. Then $||\overline{x}|| = ||x|| \geq 1$. Hence $\overline{x} \neq 1$. Since \overline{G} is $\mathcal{RF}p$ by (F2), there exists $\overline{N} \triangleleft_p \overline{G}$ such that $\overline{x} \notin \overline{N}$. Let N be the preimage of \overline{N} in G. Then $N \triangleleft_p G$ and $x \notin N$ as required. \Box

Theorem 3.6. Let Λ be a *p*-filter of $G = A *_H B$. If, for each $1 \neq x \in H$, there exists $(M, N) \in \Lambda$ such that $x \notin M$, then G is \mathcal{RFp} .

Proof. Let $1 \neq x \in G$. If $x \notin H$ then, by Remark 3.5, there exists $N \triangleleft_p G$ such that $x \notin N$. Thus, let $1 \neq x \in H$ and suppose $x \notin M$ for some $(M, N) \in \Lambda$. Let $\overline{G} = A/M *_{\overline{H}} B/N$, as before. Then $\overline{x} \neq 1$. Since \overline{G} is $\mathcal{RF}p$ by (F2), we can find $N \triangleleft_p G$ such that $x \notin N$. Hence G is $\mathcal{RF}p$.

The following is a generalization of Theorem 2.2.

Corollary 3.7([5, Theorem 4.3]). If A and B are $\mathcal{RF}p$ and $|c| < \infty$, then $G = A *_{(c)} B$ is $\mathcal{RF}p$.

Proof. By Lemma 3.2, $\Lambda = \{(M, N) \mid M \triangleleft_p A, N \triangleleft_p B \text{ such that } M \cap \langle c \rangle = 1 = N \cap \langle c \rangle \}$ is a *p*-filter of $G = A *_{\langle c \rangle} B$. Let $1 \neq x \in \langle c \rangle$. As in the proof of Lemma 3.2, there exists $(M, N) \in \Lambda$ such that $x \notin M$. Hence, by Theorem 3.6, G is \mathcal{RFp} . \Box

The following is a main result in [5]. We shall prove it using Theorem 3.6.

Corollary 3.8([5, Theorem 4.2]). If A and B are $\mathcal{RF}p$ and $\langle c \rangle$ is p-closed in both A and B, then $G = A *_{\langle c \rangle} B$ is $\mathcal{RF}p$.

Proof. By Lemma 3.3, $\Lambda = \{(M, N) \mid M \lhd_p A, N \lhd_p B \text{ such that } M \cap \langle c \rangle = N \cap \langle c \rangle \}$ is a *p*-filter of *G*. To use Theorem 3.6, let $1 \neq x \in \langle c \rangle$. Then $x \notin \langle c^{p^n} \rangle$ for some *n*. By Corollary 2.3 [5], there exist $M \lhd_p A$ and $N \lhd_p B$ such that $M \cap \langle c \rangle = \langle c^{p^n} \rangle = N \cap \langle c \rangle$. Hence $(M, N) \in \Lambda$ and $x \notin M$. Thus, by Theorem 3.6, *G* is \mathcal{RFp} . \Box

4. Main results

498

In this section, we shall show that certain generalized free products of $\mathcal{RF}p$ groups, amalgamating a normal subgroup, are $\mathcal{RF}p$. The following is easy to see.

Proposition 4.1. Let $H \triangleleft A$. Then H is p-closed in A if, and only if, A/H is \mathcal{RFp} .

By using Proposition 2.6 and 4.1, we have:

Corollary 4.2. Let A be finitely generated nilpotent and $H \triangleleft A$. Then the following are equivalent:

- (1) H is p-closed in A.
- (2) A/H is \mathcal{RFp} .

(3) The torsion subgroup of A/H is a finite p-group.

Theorem 4.3. Let A and B be finite p-groups and H be normal in both A and B. If, for each $1 \neq x \in H$, there exists a normal subgroup D of both A and B such that $x \notin D$ and $D \leq H$, where H/D is cyclic, then $G = A *_H B$ is \mathcal{RFp} .

Proof. By Lemma 3.4, $\Lambda = \{(H, H)\}$ is a p-filter of $G = A *_H B$. Let $1 \neq x \in G$. If $x \notin H$ then, by Remark 3.5, there exists $N \triangleleft_p G$ such that $x \notin N$. If $1 \neq x \in H$ then, by assumption, there exists a normal subgroup D of both A and B such that $x \notin D$, $D \leq H$, and H/D is cyclic. Let $\overline{G} = A/D *_{\overline{H}} B/D$ where $\overline{H} = H/D$ is cyclic. Since A/D and B/D are finite p-groups, \overline{G} is $\mathcal{RF}p$ by Theorem 2.2. Since $x \notin D, \overline{x} \neq 1$. Hence there exists $\overline{N} \triangleleft_p \overline{G}$ such that $\overline{x} \notin \overline{N}$. Let N be the preimage of \overline{N} in G. Then $N \triangleleft_p G$ and $x \notin N$. Hence G is $\mathcal{RF}p$.

The following example explains why we need the normal subgroup D of both A and B in the theorem above.

Example 4.4 ([5, Example 2.5]). Let $A_i = \langle x_i, y_i | x_i^4, y_i^2, \langle x_i y_i \rangle^2 \rangle$, for i = 1, 2. Then the generalized free product $A_1 \underset{H}{*} A_2$, where $H = \langle x_1^2, y_1 \rangle \simeq \langle y_2, x_2^2 \rangle$, of A_1 and A_2 amalgamating $x_1^2 = y_2$ and $y_1 = x_2^2$ is not \mathcal{RF}_2 [5]. Moreover A_1, A_2 are finite 2-groups of order 8 and $H = \langle x_1^2, y_1 \rangle$ is order 4. Thus H is normal in both A_1 and A_2 . Clearly $1 \neq x_1^2 \in H$. Note that H has nontrivial subgroups $\langle x_1^2 \rangle, \langle y_1 \rangle, \langle x_1^2 y_1 \rangle$. But $\langle y_1 \rangle, \langle x_1^2 y_1 \rangle$ are not normal in A_1 . Therefore, there is no $D \leq H$ such that $D \triangleleft A_1, x_1^2 \notin D$ and H/D is cyclic.

Theorem 4.5. Let A and B be $\mathcal{RF}p$ and H be normal in both A and B. Suppose that H is p-closed in A and B. If, for each $1 \neq x \in H$, there exist $M \triangleleft_p A$ and $N \triangleleft_p B$ such that $M \cap H = N \cap H$, $x \notin M$ and HM/M is cyclic, then $A *_H B$ is $\mathcal{RF}p$.

Proof. Let $1 \neq x \in G$. Since H is a p-closed normal subgroup of A, A/H is \mathcal{RFp} by Proposition 4.1. Similarly B/H is \mathcal{RFp} . Hence, by Lemma 3.4, $\{(H, H)\}$ is a p-filter of $G = A *_H B$. If $x \notin H$ then, by Remark 3.5, there exists $N \triangleleft_p G$ such that $x \notin N$. Thus, suppose $1 \neq x \in H$. By assumption, there exist $M \triangleleft_p A$ and $N \triangleleft_p B$ such that $M \cap H = N \cap H$, $x \notin M$ and HM/M is cyclic. Let $\overline{G} = A/M *_{\overline{H}} B/N$, where $\overline{H} = HM/M$. Then, by Theorem 2.2, \overline{G} is \mathcal{RFp} and $1 \neq \overline{x} \in \overline{G}$. Hence, as

usual, we can find $N \triangleleft_p G$ and $x \notin N$. Hence G is \mathcal{RFp} .

Theorem 4.6. Let A and B be \mathcal{RFp} and H be normal in both A and B. Suppose that H is p-closed in A and B. If, for each $1 \neq x \in H$, there exists a normal subgroup D of A and B such that $x \notin D$ and $D \subset H$, A/D and B/D are \mathcal{RFp} and H/D is cyclic, then $A *_H B$ is \mathcal{RFp} .

Proof. As before, we consider $1 \neq x \in H$. By assumption, there exists a normal subgroup D of A and B such that $x \notin D$ and $D \subset H$, A/D and B/D are \mathcal{RFp} and H/D is cyclic. Let $\overline{G} = \overline{A} *_{\overline{H}} \overline{B}$, where $\overline{A} = A/D$, $\overline{B} = B/D$ and $\overline{H} = H/D$. Since H is p-closed in A and B, it is not difficult to see that \overline{H} is p-closed in \overline{A} and \overline{B} . This follows from Corollary 3.8 that \overline{G} is \mathcal{RFp} . Since $1 \neq \overline{x} \in \overline{H}$, we can find $\overline{N} \triangleleft_p \overline{G}$ such that $\overline{x} \notin \overline{N}$. Let N be the preimage of \overline{N} in G. Then $N \triangleleft_p G$ and $x \notin N$. Hence G is \mathcal{RFp} .

Corollary 4.7. Let A and B be finitely generated nilpotent, $\mathcal{RF}p$ groups. Let H be p-closed in both A and B such that $H \leq Z(A) \cap Z(B)$. Then $G = A *_H B$ is $\mathcal{RF}p$.

Proof. To apply Theorem 4.6, let $1 \neq g \in H$. Since H is finitely generated abelian and \mathcal{RFp} , $H \simeq \mathbb{Z}_{p^{r_1}} \times \cdots \times \mathbb{Z}_{p^{r_s}} \times \mathbb{Z} \times \cdots \times \mathbb{Z}$. Since $1 \neq g \in H$, we consider $g = (a_1, \cdots, a_s, a_{s+1}, \cdots, a_n)$ and $a_i \neq 0$ for some i. If $a_1 \neq 0$ (similarly, $a_k \neq 0$ for $2 \leq k \leq s$), let $D = \{0\} \times \mathbb{Z}_{p^{r_2}} \times \cdots \times \mathbb{Z}_{p^{r_s}} \times \mathbb{Z} \times \cdots \times \mathbb{Z}$. Then $H/D \simeq \mathbb{Z}_{p^{r_1}}$ is cyclic and $x \notin D$. If $a_{s+1} \neq 0$ (similarly, $a_k \neq 0$ for $s + 2 \leq k \leq n$), then $a_{s+1} \notin p^{\alpha}\mathbb{Z}$ for some α . Let $D = \mathbb{Z}_{p^{r_1}} \times \cdots \times \mathbb{Z}_{p^{r_s}} \times p^{\alpha}\mathbb{Z} \times \mathbb{Z} \times \cdots \times \mathbb{Z}$. Then $H/D \simeq \mathbb{Z}_{p^{\alpha}}$ is cyclic and $x \notin D$. Now, A/D is finitely generated nilpotent and H/Dis a finite p-subgroup of A/D and $(A/D)/(H/D) \simeq A/H$. Since H is p-closed in A, by Proposition 4.1, A/H is \mathcal{RFp} . Hence, A/D is \mathcal{RFp} by Corollary 2.7. Similarly, B/D is \mathcal{RFp} . Therefore, by Theorem 4.6, G is \mathcal{RFp} .

Combining Theorem 4.7, Theorem 2.5 and Corollary 4.2, we have

Corollary 4.8. Let A and B be finitely generated abelian, $\mathcal{RF}p$ groups, and let H be a proper subgroup of both A and B. The the following are equivalent.

- 1. $A *_H B$ is $\mathcal{RF}p$;
- 2. H is p-closed in both A and B; and,
- 3. the torsion subgroups of A/H and B/H are p-groups.

The following improves Corollary 4.7.

Theorem 4.9. Let A and B be $\mathcal{RF}p$ groups, where A is finitely generated nilpotent. Let H be p-closed in both A and B such that $H \leq Z(A)$ and $H \triangleleft B$. Then $G = A \ast_H B$ is $\mathcal{RF}p$.

Proof. Let $1 \neq g \in G$. As in the proof of Theorem 4.5, we suppose $1 \neq g \in H$. Since B is $\mathcal{RF}p$, there exists $M \triangleleft_p B$ such that $g \notin M$. Then $M \cap H \triangleleft_p H$ and $M \cap H \triangleleft A$, since $H \leq Z(A)$. Let $\overline{A} = A/(M \cap H)$. Then \overline{H} is a finite p-group and $\overline{A}/\overline{H} \cong A/H$ is $\mathcal{RF}p$. This follows from Corollary 2.7 that \overline{A} is $\mathcal{RF}p$. Hence there exists $\overline{N} \triangleleft_p \overline{A}$ such that $\overline{N} \cap \overline{H} = 1$. Let N be the preimage of \overline{N} in A. Then $N \triangleleft_p A$ and $N \cap H = M \cap H$. Let $\overline{G} = A/N *_{\overline{H}} B/M$. By Proposition 2.3, \overline{G} is $\mathcal{RF}p$ and $\overline{g} \neq 1$. Hence we can find $\overline{S} \triangleleft_p \overline{G}$ such that $\overline{g} \notin \overline{S}$. Let S be the preimage of \overline{S} in G. Then $S \triangleleft_p G$ and $g \notin S$, as required. Hence G is $\mathcal{RF}p$.

We can apply this to certain tree products amalgamating a single subgroup.

Theorem 4.10. Let $I = \{1, 2, \dots, n\}$, where $n \ge 2$. Suppose each A_i $(i \in I)$ is a finitely generated nilpotent, \mathcal{RFp} group. Let $H \le Z(A_i)$ and $H \ne A_i$ for all $i \in I$. Let G be the generalized free product $*_HA_i$ of A_i $(i \in I)$ amalgamating a single subgroup H. Then G is \mathcal{RFp} if, and only if, H is p-closed in each A_i if, and only if, the torsion subgroup of each A_i/H is a finite p-group.

Proof. Suppose H is p-closed in each A_i . Let $G_{i+1} = G_i *_H A_{i+1}$. Inductively we show that G_{i+1} is $\mathcal{RF}p$ assuming that G_i is $\mathcal{RF}p$. Clearly $H \lhd G_i$, in fact, $H \le Z(G_i)$. Since G_i/H is a free product of $\mathcal{RF}p$ groups $A_1/H, \dots, A_i/H, G_i/H$ is $\mathcal{RF}p$. Hence H is p-closed in G_i by Proposition 4.1. Thus, by Theorem 4.9, G_{i+1} is $\mathcal{RF}p$. Therefore $G = G_n$ is $\mathcal{RF}p$.

Conversely, suppose G is $\mathcal{RF}p$. Since its subgroup $A_i *_H A_{i+1}$ is also $\mathcal{RF}p$, by Theorem 2.5, H is p-closed in A_i .

Combining Theorem 4.10, Theorem 2.5 and Corollary 4.2, we have

Theorem 4.11. Let $I = \{1, 2, \dots, n\}$, where $n \geq 2$. Suppose each A_i $(i \in I)$ is a finitely generated abelian, $\mathcal{RF}p$ group. Let G be the generalized free product $*_HA_i$ of A_i $(i \in I)$ amalgamating a single subgroup H. Then G is $\mathcal{RF}p$ if, and only if, H is p-closed in each A_i if, and only if, the torsion subgroup of each A_i/H is a finite p-group.

Finally we note that the condition "*p*-closed" in Theorem 4.11 can not be eliminated because of the following simple example.

Example 4.12. Note that $\langle x^n \rangle$ is a *p*-closed subgroup of $\langle x \rangle$ if and only if $n = p^{\alpha}$ for some α . Hence $\langle a^2 \rangle$ is a 2-closed subgroup of $\langle a \rangle$ and $\langle b^3 \rangle$ is not a 2-closed subgroup of $\langle b \rangle$. Then $\langle a \rangle \underset{a^2=b^3}{*} \langle b \rangle$ is not \mathcal{RF}_2 . In fact, $\langle a \rangle \underset{a^2=b^3}{*} \langle b \rangle$ is not $\mathcal{RF}p$ for any prime *p*.

References

- G. Baumslag, Lecture notes on nilpotent groups, C. B. M. S. Regional Conf. Ser. in Math., Amer. Math. Soc. No. 2., (1971)
- [2] D. Doniz. Residual properties of free products of infinitely many nilpotent groups amalgamating cycles, J. Algebra, 179(1996), 930–935.
- [3] K. W. Gruenberg. Residual properties of infinite soluble groups, Proc. London Math. Soc., (3), 7(1957), 29–62.

- [4] G. Higman. Amalgams of p-groups, J. Algebra, 1(1964), 301–305.
- [5] G. Kim and J. McCarron. On amalgamated free products of residually p-finite groups, J. Algebra, 162(1)(1993), 1–11.
- [6] G. Kim and C. Y. Tang. On generalized free products of residually p-finite groups, J. Algebra, 201(1998), 317–327.
- [7] J. McCarron. Residual nilpotence and one relator groups, PhD thesis, University of Waterloo, Canada, (1995).
- [8] P. C. Wong and C. K. Tang. Tree products of residually p-finite groups, Algebra Colloq., 2(3)(1995), 209–212.