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Abstract. We show that free products of finitely generated and residually p-finite nilpo-

tent groups, amalgamating p-closed central subgroups are residually p-finite. As a conse-

quence, we are able to show that generalized free products of residually p-finite abelian

groups are residually p-finite if the amalgamated subgroup is closed in the pro-p topology

on each of the factors.

1. Introduction

A generalized free product of two finite p-groups need not be residually a fi-
nite p-group. (Here, and in the sequel, p is a prime number.) However, Higman
[4] showed that if the amalgamated subgroup is cyclic, then the generalized free
product of two finite p-groups is residually a finite p-group. Higman’s result was
subsequently extended to generalized free products of residually p-finite groups [5],
[6], [8] where the amalgamated subgroups are cyclic.

In this paper, we consider again the generalized free product of residually p-
finite groups, using a somewhat different approach than was used in [5], [6]. We
introduce the idea of a p-filter, which enables us to develop criteria for generalized
free products to be residually p-finite. We then apply these criteria to obtain a
number of new results identifying residually p-finite generalized free products. In
particular, generalized free products in which the amalgamated subgroup is normal
or cyclic are considered. For example, a free product of finitely generated and
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residually p-finite nilpotent groups, amalgamating a p-closed central subgroup is
shown to be residually a finite p-group. As a consequence, we are able to show that
a generalized free product of residually p-finite abelian groups is residually a finite
p-group if the amalgamated subgroup is closed in the pro-p topology on each of the
factors.

The main tool used in our results is the notion of a “p-filter”. These are defined,
and a number of technical results concerning them developed, in Section 3.

2. Preliminaries

Definition 2.1. A group G is said to be residually a finite p-group (RFp) if, for
each 1 6= x ∈ G, there exists a normal subgroup N of p-power index in G (N �p G)
such that x /∈ N .

If H is a subgroup of G, we denote by AutG(H) the image, in the automorphism
group of H, of the normalizer of H in G, under the natural homomorphism into
Aut(H). The following result of G. Higman will be important throughout this
paper.

Theorem 2.2([4]). Let G = A ∗H B, where A and B are finite p-groups.
(1) If H is cyclic, then G is RFp.
(2) If H is normal, both in A and in B, then G is RFp if, and only if, AutA(H)
and AutB(H) generate a p-subgroup of Aut(H).

Higman’s theorem (1) has a several consequences in [2], [5], [6]. If H ≤ Z(A)
then AutA(H) = 1. Hence the following is an easy consequence of (2).

Proposition 2.3([7]). Let G = A ∗H B, where A and B are finite p-groups. If
H ≤ Z(A) and H � B then G is RFp.

Definition 2.4. Let G be a group. A subgroup H of G is p-closed in G if, for each
g ∈ G \H, there exists N �p G such that g /∈ NH. In particular, {1} is p-closed in
G iff G is RFp.

Let A be RFp. Corollary 3.5 in [5] shows that A ∗H A is RFp if, and only if,
H is p-closed in A. Thus p-closedness plays an important role in the study of the
residually finite p-group property of generalized free products.

Theorem 2.5. Let G = A ∗H B, where H ≤ Z(B) and A 6= H 6= B. If G is RFp,
then H is p-closed in A.

Proof. Let a ∈ A \H. Choose b ∈ B \H. Then [a, b] 6= 1. Since G is RFp, there
exists N �p G such that [a, b] 6∈ N . This implies a 6∈ NH, since H ≤ Z(B). Hence
a 6∈ (N ∩A)H and N ∩A �p A. Thus H is p-closed in A. �

Every element of finite order in a RFp group has a p-power order. The converse
of this fact holds for finitely generated nilpotent groups.

Proposition 2.6([1],[3]). Let A be finitely generated nilpotent. Then A is RFp if,
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and only if, the torsion subgroup of A is a finite p-group.

Corollary 2.7. Let G be a finitely generated nilpotent group and H � G. If H is
a finite p-subgroup of G and G/H is RFp, then G is RFp.

3. p-filters

Definition 3.1. Let G = A ∗H B. Let Λ = {(Mi, Ni) | i ∈ I} be a non-empty
family of pairs (Mi, Ni), where Mi � A and Ni � B, satisfying the following:

(F1) Mi ∩H = Ni ∩H for each i ∈ I;
(F2) For each i ∈ I, A/Mi ∗H B/Ni is RFp, where H = HMi/Mi ' HNi/Ni;
(F3) For each i1, i2, · · · , in ∈ I and n ∈ Z+, (∩n

k=1Mik
,∩n

k=1Nik
) ∈ Λ;

(F4) ∩i∈IMiH = H = ∩i∈INiH.
Such Λ is called a p-filter of generalized free product G = A ∗H B.

In the following lemmas, we find some p-filters of generalized free products.

Lemma 3.2. Let A and B be RFp and let G = A ∗〈c〉 B, where |c| < ∞. Then

Λ = {(M,N) | M �p A, N �p B such that M ∩ 〈c〉 = 1 = N ∩ 〈c〉}

is a p-filter of G = A ∗〈c〉 B.

Proof. Since every element of finite order in a RFp group has a p-power order, let
|c| = pα for some α. For each 0 < i < pα, there exists Mi �p A such that ci 6∈ Mi.
Let M = ∩Mi. Then M �p A and 〈c〉 ∩M = 1. Similarly, there exists N �p B such
that 〈c〉 ∩N = 1. Thus (M,N) ∈ Λ and Λ 6= ∅.

By Theorem 2.2, A/M ∗〈c〉B/N is RFp for each (M,N) ∈ Λ. Hence (F2) holds.
To show (F4), let a ∈ A \ 〈c〉. Then ac−i 6= 1, for all 0 ≤ i < pα. Since A is RFp,
there exists M �p A such that ac−i 6∈ M for all i and 〈c〉 ∩M = 1. Then a 6∈ M〈c〉.
Similarly, there exists N�pB such that a 6∈ N〈c〉 and 〈c〉∩N = 1. Then (M,N) ∈ Λ
and a 6∈ ∩(M,N)∈ΛM〈c〉. Hence 〈c〉 ⊇ ∩(M,N)∈ΛM〈c〉. Thus ∩(M,N)∈ΛM〈c〉 = 〈c〉.
Similarly, ∩(M,N)∈ΛN〈c〉 = 〈c〉. Thus (F4) holds. Since (F1) and (F3) are trivial,
Λ is a p-filter of G = A ∗〈c〉 B. �

Lemma 3.3. Let G = A∗〈c〉B, where A,B are RFp and |c| = ∞. If 〈c〉 is p-closed
in both A and B, then

Λ = {(M,N) | M �p A, N �p B such that M ∩ 〈c〉 = N ∩ 〈c〉}

is a p-filter of G.

Proof. We note that Λ 6= ∅, since (A,B) ∈ Λ. For (M,N) ∈ Λ, A/M ∗〈c〉 B/N
is RFp by Theorem 2.2. Thus (F2) holds. Let a ∈ A \ 〈c〉. Since 〈c〉 is p-closed
in A, there exists M �p A such that a 6∈ M〈c〉. Let M ∩ 〈c〉 = 〈cpn〉 for some n.
By Corollary 2.3 [5], there exists N �p B such that N ∩ 〈c〉 = 〈cpn〉. Therefore
(M,N) ∈ Λ. Since a 6∈ M〈c〉, a 6∈ ∩(M,N)∈ΛM〈c〉. Hence ∩(M,N)∈ΛM〈c〉 ⊆ 〈c〉.
Thus ∩(M,N)∈ΛM〈c〉 = 〈c〉. Similarly, ∩(M,N)∈ΛN〈c〉 = 〈c〉. Thus (F4) holds. Since
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(F1) and (F3) is trivial, Λ is a p-filter of G = A ∗〈c〉 B. �

Lemma 3.4. Let A and B be RFp and H be normal in both A and B. If A/H
and B/H are RFp, then Λ = {(H,H)} is a p-filter of G = A ∗H B.

Proof. Since A/H and B/H are RFp, A/H ∗B/H is RFp. Clearly (F1), (F3) and
(F4) hold. Hence {(H,H)} is a p-filter of G = A ∗H B. �

Remark 3.5. Let Λ be a p-filter of G = A ∗H B. Then, for each x 6∈ H, there
exists N �p G such that x 6∈ N .

Proof. Clearly ‖x‖ ≥ 1. We only consider the case x = a1b1 · · · anbn, where
ai ∈ A \ H and bi ∈ B \ H, since the other cases are similar. By (F4), for each
1 ≤ s ≤ n, there exists (Mis

, Nis
) ∈ Λ such that as 6∈ Mis

H. Similarly, there exists
(M

′

is
, N

′

is
) ∈ Λ such that bs 6∈ N

′

is
H for each 1 ≤ s ≤ n. Let M = ∩n

s=1(Mis
∩M

′

is
)

and N = ∩n
s=1(Nis

∩ N
′

is
). Then (M,N) ∈ Λ by (F3) and M ∩ H = N ∩ H by

(F1). Let G = A ∗H B, where A = A/M , B = B/N and H = HM/M ' HN/N .
Then ‖x‖ = ‖x‖ ≥ 1. Hence x 6= 1. Since G is RFp by (F2), there exists N �p G
such that x 6∈ N . Let N be the preimage of N in G. Then N �p G and x 6∈ N as
required. �

Theorem 3.6. Let Λ be a p-filter of G = A ∗H B. If, for each 1 6= x ∈ H, there
exists (M,N) ∈ Λ such that x 6∈ M , then G is RFp.

Proof. Let 1 6= x ∈ G. If x 6∈ H then, by Remark 3.5, there exists N �p G such
that x 6∈ N . Thus, let 1 6= x ∈ H and suppose x 6∈ M for some (M,N) ∈ Λ. Let
G = A/M ∗H B/N , as before. Then x 6= 1. Since G is RFp by (F2), we can find
N �p G such that x 6∈ N . Hence G is RFp. �

The following is a generalization of Theorem 2.2.

Corollary 3.7([5, Theorem 4.3]). If A and B are RFp and |c| < ∞, then G =
A ∗〈c〉 B is RFp.

Proof. By Lemma 3.2, Λ = {(M,N) | M �p A,N �p B such that M ∩ 〈c〉 = 1 =
N ∩ 〈c〉} is a p-filter of G = A ∗〈c〉 B. Let 1 6= x ∈ 〈c〉. As in the proof of Lemma
3.2, there exists (M,N) ∈ Λ such that x 6∈ M . Hence, by Theorem 3.6, G is RFp.
�

The following is a main result in [5]. We shall prove it using Theorem 3.6.

Corollary 3.8([5, Theorem 4.2]). If A and B are RFp and 〈c〉 is p-closed in both
A and B, then G = A ∗〈c〉 B is RFp.

Proof. By Lemma 3.3, Λ = {(M,N) | M �p A,N �p B such that M ∩〈c〉 = N ∩〈c〉}
is a p-filter of G. To use Theorem 3.6, let 1 6= x ∈ 〈c〉. Then x 6∈ 〈cpn〉 for some n. By
Corollary 2.3 [5], there exist M�pA and N�pB such that M∩〈c〉 = 〈cpn〉 = N∩〈c〉.
Hence (M,N) ∈ Λ and x 6∈ M . Thus, by Theorem 3.6, G is RFp. �

4. Main results
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In this section, we shall show that certain generalized free products of RFp
groups, amalgamating a normal subgroup, are RFp. The following is easy to see.

Proposition 4.1. Let H � A. Then H is p-closed in A if, and only if, A/H is
RFp.

By using Proposition 2.6 and 4.1, we have:

Corollary 4.2. Let A be finitely generated nilpotent and H �A. Then the following
are equivalent:
(1) H is p-closed in A.
(2) A/H is RFp.
(3) The torsion subgroup of A/H is a finite p-group.

Theorem 4.3. Let A and B be finite p-groups and H be normal in both A and B.
If, for each 1 6= x ∈ H, there exists a normal subgroup D of both A and B such that
x 6∈ D and D ≤ H, where H/D is cyclic, then G = A ∗H B is RFp.

Proof. By Lemma 3.4, Λ = {(H,H)} is a p-filter of G = A ∗H B. Let 1 6= x ∈ G.
If x 6∈ H then, by Remark 3.5, there exists N �p G such that x 6∈ N . If 1 6= x ∈ H
then, by assumption, there exists a normal subgroup D of both A and B such that
x 6∈ D, D ≤ H, and H/D is cyclic. Let G = A/D ∗H B/D where H = H/D is
cyclic. Since A/D and B/D are finite p-groups, G is RFp by Theorem 2.2. Since
x 6∈ D, x 6= 1. Hence there exists N �p G such that x 6∈ N . Let N be the preimage
of N in G. Then N �p G and x 6∈ N . Hence G is RFp. �

The following example explains why we need the normal subgroup D of both A
and B in the theorem above.

Example 4.4 ([5, Example 2.5]). Let Ai = 〈xi, yi | x4
i , y

2
i , (xiyi)

2〉, for i = 1, 2.
Then the generalized free product A1 ∗

H
A2, where H = 〈x2

1, y1〉 ' 〈y2, x
2
2〉, of A1

and A2 amalgamating x2
1 = y2 and y1 = x2

2 is not RF2 [5]. Moreover A1, A2

are finite 2-groups of order 8 and H = 〈x2
1, y1〉 is order 4. Thus H is normal in

both A1 and A2. Clearly 1 6= x2
1 ∈ H. Note that H has nontrivial subgroups

〈x2
1〉, 〈y1〉, 〈x2

1y1〉. But 〈y1〉, 〈x2
1y1〉 are not normal in A1. Therefore, there is no

D ≤ H such that D � A1, x2
1 6∈ D and H/D is cyclic.

Theorem 4.5. Let A and B be RFp and H be normal in both A and B. Suppose
that H is p-closed in A and B. If, for each 1 6= x ∈ H, there exist M �p A and
N �p B such that M ∩H = N ∩H, x 6∈ M and HM/M is cyclic, then A ∗H B is
RFp.

Proof. Let 1 6= x ∈ G. Since H is a p-closed normal subgroup of A, A/H is RFp
by Proposition 4.1. Similarly B/H is RFp. Hence, by Lemma 3.4, {(H,H)} is a
p-filter of G = A∗H B. If x 6∈ H then, by Remark 3.5, there exists N �p G such that
x 6∈ N . Thus, suppose 1 6= x ∈ H. By assumption, there exist M �p A and N �p B
such that M ∩H = N ∩H, x 6∈ M and HM/M is cyclic. Let G = A/M ∗H B/N ,
where H = HM/M . Then, by Theorem 2.2, G is RFp and 1 6= x ∈ G. Hence, as
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usual, we can find N �p G and x 6∈ N . Hence G is RFp. �

Theorem 4.6. Let A and B be RFp and H be normal in both A and B. Suppose
that H is p-closed in A and B. If, for each 1 6= x ∈ H, there exists a normal
subgroup D of A and B such that x 6∈ D and D ⊂ H, A/D and B/D are RFp and
H/D is cyclic, then A ∗H B is RFp.

Proof. As before, we consider 1 6= x ∈ H. By assumption, there exists a normal
subgroup D of A and B such that x 6∈ D and D ⊂ H, A/D and B/D are RFp
and H/D is cyclic. Let G = A ∗H B, where A = A/D, B = B/D and H = H/D.
Since H is p-closed in A and B, it is not difficult to see that H is p-closed in A and
B. This follows from Corollary 3.8 that G is RFp. Since 1 6= x ∈ H, we can find
N �p G such that x 6∈ N . Let N be the preimage of N in G. Then N �p G and
x 6∈ N . Hence G is RFp. �

Corollary 4.7. Let A and B be finitely generated nilpotent, RFp groups. Let H be
p-closed in both A and B such that H ≤ Z(A)∩Z(B). Then G = A ∗H B is RFp.

Proof. To apply Theorem 4.6, let 1 6= g ∈ H. Since H is finitely generated abelian
and RFp, H ' Zpr1 × · · · × Zprs × Z × · · · × Z. Since 1 6= g ∈ H, we consider
g = (a1, · · · , as, as+1, · · · , an) and ai 6= 0 for some i. If a1 6= 0 (similarly, ak 6= 0
for 2 ≤ k ≤ s), let D = {0} × Zpr2 × · · · × Zprs × Z × · · · × Z. Then H/D ' Zpr1

is cyclic and x 6∈ D. If as+1 6= 0 (similarly, ak 6= 0 for s + 2 ≤ k ≤ n), then
as+1 6∈ pαZ for some α. Let D = Zpr1 × · · · × Zprs × pαZ × Z × · · · × Z. Then
H/D ' Zpα is cyclic and x 6∈ D. Now, A/D is finitely generated nilpotent and H/D
is a finite p-subgroup of A/D and (A/D)/(H/D) ' A/H. Since H is p-closed in A,
by Proposition 4.1, A/H is RFp. Hence, A/D is RFp by Corollary 2.7. Similarly,
B/D is RFp. Therefore, by Theorem 4.6, G is RFp. �

Combining Theorem 4.7, Theorem 2.5 and Corollary 4.2, we have

Corollary 4.8. Let A and B be finitely generated abelian, RFp groups, and let H
be a proper subgroup of both A and B. The the following are equivalent.

1. A ∗H B is RFp;

2. H is p-closed in both A and B; and,

3. the torsion subgroups of A/H and B/H are p-groups.

The following improves Corollary 4.7.

Theorem 4.9. Let A and B be RFp groups, where A is finitely generated nilpotent.
Let H be p-closed in both A and B such that H ≤ Z(A) and H�B. Then G = A∗HB
is RFp.

Proof. Let 1 6= g ∈ G. As in the proof of Theorem 4.5, we suppose 1 6= g ∈ H.
Since B is RFp, there exists M�pB such that g 6∈ M . Then M ∩ H �p H and
M ∩H � A, since H ≤ Z(A). Let A = A/(M ∩H). Then H is a finite p-group and
A/H ∼= A/H is RFp. This follows from Corollary 2.7 that A is RFp. Hence there
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exists N�pA such that N ∩H = 1. Let N be the preimage of N in A. Then N�pA
and N ∩H = M ∩H. Let G = A/N ∗H B/M . By Proposition 2.3, G is RFp and
g 6= 1. Hence we can find S�pG such that g 6∈ S. Let S be the preimage of S in G.
Then S�pG and g 6∈ S, as required. Hence G is RFp. �

We can apply this to certain tree products amalgamating a single subgroup.

Theorem 4.10. Let I = {1, 2, · · · , n}, where n ≥ 2. Suppose each Ai (i ∈ I) is a
finitely generated nilpotent, RFp group. Let H ≤ Z(Ai) and H 6= Ai for all i ∈ I.
Let G be the generalized free product ∗HAi of Ai (i ∈ I) amalgamating a single
subgroup H. Then G is RFp if, and only if, H is p-closed in each Ai if, and only
if, the torsion subgroup of each Ai/H is a finite p-group.

Proof. Suppose H is p-closed in each Ai. Let Gi+1 = Gi ∗H Ai+1. Inductively
we show that Gi+1 is RFp assuming that Gi is RFp. Clearly H � Gi, in fact,
H ≤ Z(Gi). Since Gi/H is a free product of RFp groups A1/H, · · · , Ai/H, Gi/H
is RFp. Hence H is p-closed in Gi by Proposition 4.1. Thus, by Theorem 4.9, Gi+1

is RFp. Therefore G = Gn is RFp.
Conversely, suppose G is RFp. Since its subgroup Ai ∗H Ai+1 is also RFp, by

Theorem 2.5, H is p-closed in Ai. �

Combining Theorem 4.10, Theorem 2.5 and Corollary 4.2, we have

Theorem 4.11. Let I = {1, 2, · · · , n}, where n ≥ 2. Suppose each Ai (i ∈ I) is a
finitely generated abelian, RFp group. Let G be the generalized free product ∗HAi

of Ai (i ∈ I) amalgamating a single subgroup H. Then G is RFp if, and only if, H
is p-closed in each Ai if, and only if, the torsion subgroup of each Ai/H is a finite
p-group.

Finally we note that the condition“p-closed” in Theorem 4.11 can not be elim-
inated because of the following simple example.

Example 4.12. Note that 〈xn〉 is a p-closed subgroup of 〈x〉 if and only if n = pα

for some α. Hence 〈a2〉 is a 2-closed subgroup of 〈a〉 and 〈b3〉 is not a 2-closed
subgroup of 〈b〉. Then 〈a〉 ∗

a2=b3
〈b〉 is not RF2. In fact, 〈a〉 ∗

a2=b3
〈b〉 is not RFp for

any prime p.
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