$M V$-Algebras of Continuous Functions and l-Monoids

Tae Ho Choe
Department of Math. Stat. McMaster University Hamilton, Ont. Canada
e-mail: choe@mcmaster.ca
Eun Sup Kim, Myeong Og Kim and Young Soo Park
Department of Math.College of Natural Sciences Kyungpook National University Taegu, Korea
e-mail: eskim@knu.ac.kr, myngokim@hanmail.net and yngspark@knu.ac.kr

Abstract. A. Di Nola \& S.Sessa [8] showed that two compact spaces X and Y are homeomorphic iff the $M V$-algebras $C(X, I)$ and $C(Y, I)$ of continuous functions defined on X and Y respectively are isomorphic. And they proved that A is a semisimple $M V$-algebra iff A is a subalgebra of $C(X)$ for some compact Hausdorff space X. In this paper, firstly by use of functorial argument, we show these characterization theorems. Furthermore we obtain some other functorial results between topological spaces and $M V$-algebras. Secondly as a classical problem, we find a necessary and sufficient condition on a given residuated l-monoid that it is segmenently embedded into an l-group with order unit.

1. Introduction

An $M V$-algebra is a universal algebra $(A,+, \cdot, *, 0,1)$ of $(2,2,1,0,0)$ type such that $(A,+, 0)$ is an abelian monoid and moreover, $x+1=1, x^{* *}=x, 0^{*}=1, x+x^{*}=$ $1, x \cdot y=\left(x^{*}+y^{*}\right)^{*}$ and $x+x^{*} y=y+y^{*} x$ for all $x, y \in A$. By setting $x \vee y=x+x^{*} y$ and $x \wedge y=x\left(x^{*}+y\right)$ we have $(A, \vee, \wedge, 0,1)$ as a bounded distributive lattice.

The system of $M V$-algebras is a kind of better system in the sense that closed under subalgebras, quotients and products and the free $M V$-algebra with a denumerable set of generators can be described by $M V$-algebras of continuous $I=[0,1]$ valued functions on the Hilbert cube [11]. Furthermore, the variety of $M V$-algebras is a Malcev variety and has the congruence regularity [10].

In the first part of this paper, we establish a dual-adjunction $(\eta, \varepsilon): S \vdash C$ from the subcategory \mathbf{X} of Tychonoff spaces of Top into the subcategory \mathbf{A} of semisimple $M V$-algebras of \mathfrak{M}_{v}, where Top and \mathfrak{M}_{v} are the categories of topological spaces and $M V$-algebras respectively. We have shown that for every compact Hausdorff space X, the counit ε_{X} is a homeomorphism. It reduces that $C(X) \cong C(Y)$ ($M V$-isomorphism) for two compact Hausdorff spaces X and Y iff $X \cong Y$ (homeo-

[^0]2000 Mathematics Subject Classification: 03B50, 06D99 and 06A10.
This research was supported by Brain Pool Program by KOSEF(Korea).
morphism). We also showed that if X is a compact Hausdorff space and if $X=S(A)$ for some $M V$-algebra then X must be a Boolean space.

Mundici [11] showed that, given an $M V$-algebra A, there exists an abelian lattice-ordered group G with order unit u such that $A \cong \Gamma(G, u)$ where $\Gamma(G, u)=$ $\{x \in G \mid 0 \leq x \leq u\}$ and vice versa. This fact induces that these two categories are categorically equivalent.

Furthermore, given an $A F C^{*}$-algebra \mathfrak{a} there exists a countable po-abelian group $K_{0}(\mathfrak{a})$ (=the dimension group [6] with order unit [1]. And hence we have a countable $M V$-algebra $\Gamma\left(K_{0}(\mathfrak{a}),\left[1_{\mathfrak{a}}\right]\right)$ and vice versa.

In the second part of this paper, given a residuated lattice-ordered monoid M, we study that under what conditions on M, M can be segmently embedded into an l-group G with order unit u, namely, $M \cong \Gamma(G, u)$.

2. Dual adjunctions

Let \mathbf{X} be the subcategory of Tychonoff spaces of the category Top of topological spaces. Then \mathbf{X} is the epireflective hull of the unit interval $I=[0,1]$ with the ordinary topology, i.e., $X \in \mathbf{X}$ iff X admits enough morphisms in I to separate points. Let A be the epireflective hull of the unit interval $M V$-algebra $I=[0,1]$ in the category \mathfrak{M}_{v}. It is well known that an $M V$-algebra A is semi-simple iff A is embedded into a product of unit interval $M V$-algebras. Therefore, \mathbf{A} is the category of semi-simple $M V$-algebras and their $M V$-homomorphisms.

Let $C: \mathbf{X}^{\mathbf{o p}} \rightarrow \mathbf{A}$ be a functor defined by, for $X \in \mathbf{X}^{o p}, C(X)=\operatorname{hom}_{\mathbf{X}}(X, I)$ where I has the usual topology. Then $C(X)$ is an $M V$-subalgebra of $I^{|X|}$ which is the product of I 's with power $|X|$.

For a morphism $f: X \rightarrow Y$ in $\mathbf{X}^{\mathbf{o p}}$, we define $C(f)(u)=u f$ for each $u \in C(Y)$. Define $S: \mathbf{A} \rightarrow \mathbf{X}^{\mathbf{o p}}$ by $S(A)=\operatorname{hom}_{\mathbf{A}}(A, I)$ for each $A \in \mathbf{A} . S(A)$ is a subspace of ($I^{|A|}, \tau_{p}$), where τ_{p} is the product topology of I 's. For $f: A \rightarrow B$ in \mathbf{A}, we define $S(f)(u)=u f$ for $u \in S(B)$, then $S(f)$ serves both the restriction to $S(B)$ and corestriction to $S(A)$ of the morphism $\bar{f}: I^{|B|} \rightarrow I^{|A|}$ in $\mathbf{X}^{\mathbf{o p}}$ where $\bar{f}(u)=u f$ for each $u \in I^{|B|}$. The unit η_{A} for $A \in \mathbf{A}$ is defined by $\eta_{A}(a)(u)=u(a)$ for each $u \in S(A)$ and each $a \in A$. And counit ε_{X} for each $X \in \mathbf{X}$ is defined by $\varepsilon_{X}(x)(u)=u(x)$ for each $u \in C(X)$ and each $x \in X$.

Then we have the following Theorem :
Theorem 2.1. For the categories \mathbf{X} and \mathbf{A} of Tychonoff spaces and semi-simple $M V$-algebras, C is a right adjoint to S via η and ε.
Proof. Straightforward.
Let $\operatorname{Fix} \eta=\left\{A \in \mathfrak{M}_{v} \mid \eta_{A}\right.$ is an isomorphism $\}$ and Fix $\varepsilon=\left\{X \in \mathbf{X} \mid \varepsilon_{X}\right.$ is a homeomorphism $\}$.

Theorem 2.2. If X is a compact Hausdorff space in \mathbf{X} then $X \in$ Fixe.
Proof. For any $h \in S C(X), M=h^{-1}(0)$ is a maximal ideal of $C(X)$. Since X
is compact, every maximal ideal of $C(X)$ is fixed [9], i.e., there exists a point $x \in X$ such that $M=\{f \in C(X) \mid f(x)=0\}$. On the other hand, h maps every constant function \mathbf{r} to r for each $r \in I$. For, the identity homomorphism is the only homomorphism of I into $I[9]$.

Clearly, for $f, g \in C(X), f \equiv g(M)$ iff $d(f, g) \in M=h^{-1}(0)$ iff $\left(f g^{*}+g f^{*}\right)(x)=$ 0 iff $f(x)=g(x)$ in I.

Claim that for each $r \in I, h^{-1}(r)=\{g \in C(X) \mid g(x)=r\}$. Indeed, we have that $g \in h^{-1}(r)$ iff $g \equiv \mathbf{r}(M)$ iff $g(x)=\mathbf{r}(x)=r$. Now for each $f \in C(X)=$ $\cup\left\{h^{-1}(r) \mid r \in I\right\}, f \in h^{-1}(r)$ for some r. Thus $f(x)=r$ and hence $h(f)=f(x)$, i.e., $h(f)=\varepsilon_{X}(x)(f)$. Hence $h=\varepsilon_{X}(x)$. Thus ε_{X} is surjective. But ε_{X} is always an embedding for each $X \in \mathbf{X}$. Since X is compact and $S C(X)$ is Hausdorff, ε_{X} is a homeomorphism. Thus $X \in$ Fix ε. The proof is complete.

Corollary 2.3([8, Theorem 1]). Let X and Y be both compact Hausdorff spaces. Then $C(X)$ and $C(Y)$ are isomorphic iff X and Y are homeomorphic.

For an $M V$-algebra A, let $\mathfrak{M}(A)$ be the maximal ideal space of A with the Zarisk topology τ_{z}. Let $S(A)$ be the space of all homomorphisms of A into I with the relative topology τ_{p} of the product topology of $I^{|A|}$. Then we have the following Lemma :

Lemma 2.4. For $A \in \mathbf{A}$, if $\Phi: S(A) \rightarrow \mathfrak{M}(A)$ is a map defined by $\Phi(u)=u^{-1}(0)$ for each $u \in S(A)$. Then Φ is a continuous bijection.
Proof. For $u \in S(A)$ let $u^{-1}(0)=M$. Then M is obviously an ideal of A. Thus A / M is embedded into I and hence it is locally finite. Thus M is a maximal ideal of A. Clearly Φ is a well-defined injective. To show Φ is surjective, let $M \in \mathfrak{M}(A)$. Then A / M is locally finite, and hence it is embedded into I. For this embedding i, setting $u=i \varphi$, where φ is the canonical map of A onto A / M we have that $u \in S(A)$ and $u^{-1}(0)=M$. Hence Φ is a bijection. For the continuity of Φ, let $\Phi(u)=M \in \bar{x}$ for $x \in A$, where $\bar{x}=\{M \mid x \notin M\} \in \tau_{z}$. Then $x \notin M=u^{-1}(0)$, i.e., $u(x) \neq 0$.

Consider $U=p r_{x}^{-1}(I-\{0\})$ which is an open set in $S(A)$, where $p r_{x}$ is the $x^{\text {th }}$ projection. Claim that $\Phi(U) \subset \bar{x}$. Indeed, if $v \in U$ then $v(x) \in I-\{0\}, v(x) \neq 0$. Thus $x \notin v^{-1}(0)=\Phi(v)$ and hence $\Phi(v) \in \bar{x}$. Since $\{\bar{x} \mid x \in A\}$ is a basis for τ_{z}, Φ is continuous.

Corollary 2.5. $S(A)$ is compact in τ_{p} iff $S(A)$ and $\mathfrak{M}(A)$ are homeomorphic.
Proof. By Lemma 2.4, $\Phi: S(A) \rightarrow \mathfrak{M}(A)$ is a continuous bijection. If $S(A)$ is compact, since $\mathfrak{M}(A)$ is always T_{2} [2], then we have Φ is a closed map. Thus Φ is a homeomorphism. The converse is trivial.

Corollary 2.6. For $A \in \mathfrak{M}_{v}, C(\mathfrak{M}(A))$ is a subalgebra of $C(S(A))$.
Proof. Let $F: C(\mathfrak{M}(A)) \rightarrow C(S(A))$ be the function defined by $F(h)=h \circ \Phi$ for each $h \in C(\mathfrak{M}(A))$, where Φ is the same Φ in above Lemma 2.4. Since Φ is a continuous bijection, F is injective. Moreover F is an $M V$-homomorphism. Indeed, clearly for any $h_{1}, h_{2} \in C(\mathfrak{M}(A)), F\left(h_{1}+h_{2}\right)=F\left(h_{1}\right)+F\left(h_{2}\right)$. For each
$u \in S(A), F\left(h^{*}\right)(u)=h^{*}(\Phi(u))=1-h(\Phi(u))=1-F(h)(u)=(F(h))^{*}(u)$. Thus $F\left(h^{*}\right)=F(h)^{*}$ for each $h \in C(\mathfrak{M}(A))$.

Theorem 2.7. An $M V$-algebra A is semi-simple iff A is isomorphic to a subalgebra of $C(X)$ for some Tychonoff space X.
Proof. Let A be a semi-simple $M V$-algebra. By [8], A is a subalgebra of $C(\mathfrak{M}(A))$ where $\mathfrak{M}(A)$ is the space of maximal ideals. By Corollary $2.6, A$ is a subalgebra of $C(S(A))$ and $S(A)$ is a Tychonoff space because $S(A)$ is embedded in $I^{|A|}$. Conversely if A is a subalgebra of $C(X)$ for some Tychonoff space X, since $C(X)$ is embedded into $I^{|X|}, A$ is semi-simple.

Let $S(\mathbf{A})$ be the full isomorphism closed subcategory of \mathbf{X} consisting of $S(A)$ for all $A \in \mathbf{A}$, and let $\mathbf{C o m p H}$ be the full subcategory of \mathbf{X} consisting of all compact Hausdorff spaces in \mathbf{X}, and let BooSp be the full subcategory of X consisting of all Boolean spaces in \mathbf{X}.

Then we have the following Theorem :
Theorem 2.8. $S(\mathbf{A}) \cap \mathbf{C o m p H}=\mathbf{B o o S p}$ via $S \vdash C$.
Proof. Let $X \in S(A) \cap \mathbf{C o m p H}$. Then $X=S(A)$ for some $A \in \mathbf{A}$. Since $S(A)$ is compact in τ_{p}, by Corollary $2.5 S(A)$ and $\mathfrak{M}(A)$ are homeomorphic. But since A is semi-simple, $\mathfrak{M}(A)$ is a Boolean space. Thus $X \in$ BooSp.

Conversely if $X \in$ Boolean Space then by Theorem $2.2, \varepsilon_{X}$ is a homeomorphism, i.e., $X \cong S C(X)$. Let $A=C(X) \in \mathbf{A}$. Then $S(A) \cong X \in \mathbf{C o m p H}$ and $X \in S(\mathbf{A})$.

3. Residuated l-monoids

By a \wedge-semilattice-ordered monoid $(=\wedge-l$-monoid), we mean a system $M=$ $(|M|,+, \wedge, 0,1)$ satisfying the followings :
(i) $(|M|,+, 0)$ is a commutative monoid.
(ii) $(|M|, \wedge)$ is a \wedge-semilattice with 0 and 1 .
(iii) $x+(y \wedge z)=(x+y) \wedge(x+z)$ for any $x, y, z \in M$.

By a residuated $\wedge-l-$ monoid, we mean a $\wedge-l-$ monoid M in which for each $a \in M$ there exists the least element a^{*} of $\{x \in M \mid a+x=1\}$ which satisfies $a^{* *}=a$.

The dual notion of a $\wedge-l-$ monoid is defined as follows :
By a \vee-semilattice-ordered monoid ($=\vee-l$-monoid) we mean a system $M=$ $(|M|, \cdot, \vee, 0,1)$ satisfying the following :
(i) $(|M|, \cdot, 1)$ is a commutative monoid.
(ii) (M, \vee) is a \vee-semilattice with 0 and 1 .
(iii) $x(y \vee z)=(x y) \vee(x z)$ for any $x, y, z \in M$.

A $\vee-l-$ monoid is said to be residuated if for each $a \in M$ there exists the greatest element a^{*} of $\{x \in M \mid a \cdot x=0\}$ which satisfies $a^{* *}=a$.

Although we define separately $\wedge-l-$ monoid and its dual notion $\vee-l-$ monoid, we can show that these two systems are the same notions as long as they are both residuated, as we can show by the following :

Lemma 3.1. If M is a residuated $\wedge-l$-monoid then M is also a residuated $\vee-l$-monoid and conversely.
Proof. Since $x=x^{* *}$ for each $x \in M$, we have $x \leq y$ (iff $x \wedge y=x$) iff $y^{*} \leq x^{*}$ by definition of $*$-operation.
Then clearly $x \vee y=\left(x^{*} \wedge y^{*}\right)^{*}$ is the least upper bound of x and y in M. For any $a, x \in M$ we have that $a^{*} \leq x$ iff $a+x=1$ which is equivalent to that $x^{*} \leq a$ iff $a^{*} \cdot x^{*}=0$, where $a^{*} \cdot x^{*}=(a+x)^{*}$, that is equivalent to that $y \leq a^{*}$ iff $a y=0$ for any a and $y \in M$. Hence $*$-operation of M is the same $*$-operation of the $V-l$-monoid induced by M. The other requirments are obvious.

In the following, we call either residuated (\wedge or \vee) l-monoid a residuated l monoid simply.

Definition 3.2. Let M be a residuated l-monoid. If M satisfies the following conditions :
(a) for $x, y \in M, x^{*}\left(x^{*} y\right)^{*}=y^{*}\left(y^{*} x\right)^{*}$
(b) for $x, y \in M, x y^{*} \wedge x^{*} y=0$
then we say that M has the commuting property.
Our aim is that any residuated l-monoid satisfying the commuting property has an $M V$-algebra structure so that it can be segmently embedded into an l-group. The crucial argument here is that the lattice-operations of M are actually those of the $M V$-algebra obtained from M.

Firstly we have the following obvious Lemma:
Lemma 3.3. If A is an $M V$-algebra then $M(A)=(|A|,+, \cdot, *, \vee, \wedge, 0,1)$ forms a residuated l-monoid with the commutating property, where $x \vee y=x+x^{*} y$ and $x \wedge y=x\left(x^{*}+y\right)$.

Conversely we have the following Theorem :
Theorem 3.4. If M is a residuated l-monoid satisfying the commuting property, then M becomes an $M V$-algebra, denoted by $A(M)$, whose lattice-operations V and \wedge are actually the same as those operations \vee and \wedge of M, respectively.

Proof. Evidently from the structures of M (both structures of residuated \vee and \wedge-semi lattice ordered monoid), all the axioms of an $M V$-algebra hold except for the commuting property, but we assume the commuting property. Thus M forms
an $M V$-algebra denoted by $A(M)$. So $A(M)$ has its own lattice-operations : $x \mathrm{~V}$ $y=y \boxed{\bigvee} x=x+x^{*} y$ and $x \triangle y=y \wedge x=x\left(x^{*}+y\right)$ for all x and $y \in A(M)$. Thus the first part of the proof of the theorem is complete. We however note that $x \leq y$ (iff $x \vee y=y$) for $x, y \in M$ is not necessary to be the same as $x \leq y$ (iff $x \boxtimes y=y)$ for $x, y \in A(M)$ as yet.

For the proof of the second part of theorem we need the following several Lemmas.

Lemma 3.5. In M, we have that $x \leq y$ iff $x y^{*}=0$ for each $x, y \in M$.
Proof. $x \leq y$ means $x \vee y=y$. Thus $y^{*}(x \vee y)=0$ which implies $y^{*} x=0$. Conversely, $y^{*} x=0$ means that $x \leq y^{* *}$ by definition of $*$-operation of M, i.e., $x \leq y$.

Lemma 3.6. In $M, x \vee y \leq x+x^{*} y(=x \bigvee y)$ for all x, y.
Proof. $(x \vee y)\left(x+x^{*} y\right)^{*}=\left[x^{*}\left(x+y^{*}\right)\right](x \vee y)=\left[x x^{*}\left(x+y^{*}\right)\right] \vee\left[y x^{*}\left(x+y^{*}\right)\right]=$ $\left(y x^{*}\right)\left(y x^{*}\right)^{*}=0$.

Lemma 3.7. In $M,(x+y) z \leq x z+y$ for all x, y, z.
Proof. $[(x+y) z](x z+y)^{*}=[(x+y) z]\left[(x z)^{*} y^{*}\right]=\left[y^{*}(x+y)\right]\left[z\left(z^{*}+x^{*}\right)\right]=\left(y^{*} \wedge\right.$ $x) \cdot\left(z \triangle x^{*}\right)=\left(x \triangle y^{*}\right)\left(x^{*} \wedge z\right)=x\left(x^{*}+y^{*}\right) \cdot x^{*}(x+z)=0$.

Lemma 3.8. In $M, x+x^{*} y \leq x \vee y$, i.e., $x \bigvee y \leq x \vee y$ for all x, y.
Proof.

$$
\begin{aligned}
& \left(x+x^{*} y\right)(x \vee y)^{*}=\left(x+x^{*} y\right)\left(x^{*} \wedge y^{*}\right) \\
& \leq x \cdot\left(x^{*} \wedge y^{*}\right)+x^{*} y \quad \text { by Lemma } 3.7 \\
& \leq x \cdot x^{*}+x^{*} y=x^{*} y .
\end{aligned}
$$

Similarly $\quad\left(y+y^{*} x\right)(x \vee y)^{*} \leq y^{*} x$. By the commuting property (a) and (b), $\left(x+x^{*} y\right)(x \vee y)^{*} \leq x^{*} y \wedge y^{*} x=0$. Hence we have $x \vee y \leq x \vee y$.

By lemmas 13 and 15 , we have $x \bigvee y=x \vee y$ and dually $x \wedge y=x \wedge y$ in M or in $A(M)$. And hence the partial ordering \leq of M is the same as that \leq of $A(M)$. The proof of theorem is complete.

Corollary 3.9. A residuated l-monoid M is segmently embedded into an l-group G with order unit iff M has the commuting property.

Consider the category \mathfrak{M}_{v} of $M V$-algebras and their homomorphisms and the category \mathcal{L}_{m} of residuated l-monoids with the commuting property and their l -monoid-homomorphisms preserving $*$-operations.

Let $\Phi: \mathfrak{M}_{v} \rightarrow \mathcal{L}_{m}$ be the functor defined by $\Phi(A)=M(A)$ for each $A \in \mathfrak{M}_{v}$. If f is an $M V$-morphism in \mathfrak{M}_{v} then $\Phi(f)$ is clearly an l-monoid morphism preserving *.

Now we define $\Psi: \mathcal{L}_{m} \rightarrow \mathfrak{M}_{v}$ by $\Psi(M)=A(M)$ for each $M \in \mathcal{L}_{m}$. And if φ is an l-monoid-morphism preserving $*$, then obviously $\Psi(\varphi)$ is an $M V$-morphism.

Let $\Phi(A)=M(A)$ for an $M V$-algebra. Then from the above construction of $M(A)$, the underlying sets $|A|$ of A and A of $M(A)$ are the same. Similarly for
$\Psi(M)=A(M)$ for $M \in \mathcal{L}_{m},|M|=|A(M)|$. Thus $\mid A(M(A)|=|A|$. The operations of $A(M(A))$ and A are coincide. Hence it easy to see $\Psi \circ \Phi=\mathrm{id}_{\mathfrak{M}_{v}}$. Similarly $\Phi \circ \Psi=\operatorname{id}_{\mathcal{L}_{m}}$.

It is easy to see the following Theorem :
Theorem 3.10. The categories \mathfrak{M}_{v} and \mathcal{L}_{m} are categorically equivalent via Φ and Ψ.

Corollary 3.11. The categories \mathcal{L}_{m} and that of l-groups with order unit and their l-group-homomorphisms preserving order units are categorically equivalent.

References

[1] J. Adamek \& H. Herrlich, Abstract and Concrete Categories, John Wiley \& Sons, Inc., (1990).
[2] L. P. Belluce, Semisimple algebras of infinite-valued logic and bold fuzzy set theory, Canad. J. Math., 38(1986), 1356-1379.
[3] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Coll.(1967).
[4] C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc., 88(1958), 467-490.
[5] C. C. Chang, A new proof of the completeness of the Lukasiewicz axioms, Trans. Amer. Math. Soc., 93(1959), 74-80.
[6] G. A. Elliott, On the classification of inductive limits of sequences of semisimple finite dimension algebras, J. Algebra, 38(1976), 29-44.
[7] T. H. Choe, A dual adjointness on partially ordered topological spaces, J. of Pure and Appl. Alg., 68(1990), 87-93.
[8] A. Di Nola \& S. Sessa, On $M V$-algebras of continuous functions, Kluw. Acad. Pub. D., (1995), 23-32.
[9] L. Gillman \& M. Jerison, Rings of Continuous Functions, Van Nostrand, Princeton, (1960).
[10] G. Grätzer, Universal Algebra, D. Van Nostrand Comp. Inc., (1968).
[11] D. Mundici, Interpretation of $A F C^{*}$-algebras in Lukasiewicz sentential calculus, J. of Funct. Anal., 65(1986), 15-63.

[^0]: Received February 28, 2008.

