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Abstract. A. Di Nola & S.Sessa [8] showed that two compact spaces X and Y are

homeomorphic iff the MV -algebras C(X, I) and C(Y, I) of continuous functions defined on

X and Y respectively are isomorphic. And they proved that A is a semisimple MV -algebra

iff A is a subalgebra of C(X) for some compact Hausdorff space X. In this paper, firstly

by use of functorial argument, we show these characterization theorems. Furthermore

we obtain some other functorial results between topological spaces and MV -algebras.

Secondly as a classical problem, we find a necessary and sufficient condition on a given

residuated l-monoid that it is segmenently embedded into an l-group with order unit.

1. Introduction

An MV -algebra is a universal algebra (A,+, ·, ∗, 0, 1) of (2, 2, 1, 0, 0) type such
that (A,+, 0) is an abelian monoid and moreover, x+1 = 1, x∗∗ = x, 0∗ = 1, x+x∗ =
1, x ·y = (x∗+y∗)∗ and x+x∗y = y+y∗x for all x, y ∈ A. By setting x∨y = x+x∗y
and x ∧ y = x(x∗ + y) we have (A,∨,∧, 0, 1) as a bounded distributive lattice.

The system of MV -algebras is a kind of better system in the sense that closed
under subalgebras, quotients and products and the free MV -algebra with a denu-
merable set of generators can be described by MV -algebras of continuous I = [0, 1]-
valued functions on the Hilbert cube [11]. Furthermore, the variety of MV -algebras
is a Malcev variety and has the congruence regularity [10].

In the first part of this paper, we establish a dual-adjunction (η, ε) : S ` C from
the subcategory X of Tychonoff spaces of Top into the subcategory A of semi-
simple MV -algebras of Mv, where Top and Mv are the categories of topological
spaces and MV -algebras respectively. We have shown that for every compact Haus-
dorff space X, the counit εX is a homeomorphism. It reduces that C(X) ∼= C(Y )
(MV -isomorphism) for two compact Hausdorff spaces X and Y iff X ∼= Y (homeo-
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morphism). We also showed that if X is a compact Hausdorff space and if X = S(A)
for some MV -algebra then X must be a Boolean space.

Mundici [11] showed that, given an MV -algebra A, there exists an abelian
lattice-ordered group G with order unit u such that A ∼= Γ(G, u) where Γ(G, u) =
{x ∈ G|0 ≤ x ≤ u} and vice versa. This fact induces that these two categories are
categorically equivalent.

Furthermore, given an AFC∗-algebra a there exists a countable po-abelian
group K0(a) (=the dimension group [6] with order unit [1]. And hence we have
a countable MV -algebra Γ(K0(a), [1a]) and vice versa.

In the second part of this paper, given a residuated lattice-ordered monoid M,
we study that under what conditions on M, M can be segmently embedded into an
l-group G with order unit u, namely, M ∼= Γ(G, u).

2. Dual adjunctions

Let X be the subcategory of Tychonoff spaces of the category Top of topological
spaces. Then X is the epireflective hull of the unit interval I = [0, 1] with the
ordinary topology, i.e., X ∈ X iff X admits enough morphisms in I to separate
points. Let A be the epireflective hull of the unit interval MV -algebra I = [0, 1]
in the category Mv. It is well known that an MV -algebra A is semi-simple iff A is
embedded into a product of unit interval MV -algebras. Therefore, A is the category
of semi-simple MV -algebras and their MV -homomorphisms.

Let C : Xop → A be a functor defined by, for X ∈ Xop, C(X) = homX(X, I)
where I has the usual topology. Then C(X) is an MV -subalgebra of I |X| which is
the product of I’s with power |X|.

For a morphism f : X → Y in Xop, we define C(f)(u) = uf for each u ∈ C(Y ).
Define S : A → Xop by S(A) = homA(A, I) for each A ∈ A. S(A) is a subspace
of (I |A|, τp), where τp is the product topology of I’s. For f : A → B in A, we
define S(f)(u) = uf for u ∈ S(B), then S(f) serves both the restriction to S(B)
and corestriction to S(A) of the morphism f̄ : I |B| → I |A| in Xop where f̄(u) = uf
for each u ∈ I |B|. The unit ηA for A ∈ A is defined by ηA(a)(u) = u(a) for
each u ∈ S(A) and each a ∈ A. And counit εX for each X ∈ X is defined by
εX(x)(u) = u(x) for each u ∈ C(X) and each x ∈ X.

Then we have the following Theorem :

Theorem 2.1. For the categories X and A of Tychonoff spaces and semi-simple
MV -algebras, C is a right adjoint to S via η and ε.

Proof. Straightforward. �

Let Fixη = {A ∈ Mv| ηA is an isomorphism} and Fixε = {X ∈ X|εX is a
homeomorphism }.

Theorem 2.2. If X is a compact Hausdorff space in X then X ∈ Fixε.

Proof. For any h ∈ SC(X),M = h−1(0) is a maximal ideal of C(X). Since X
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is compact, every maximal ideal of C(X) is fixed [9], i.e., there exists a point
x ∈ X such that M = {f ∈ C(X)|f(x) = 0}. On the other hand, h maps every
constant function r to r for each r ∈ I. For, the identity homomorphism is the only
homomorphism of I into I [9].

Clearly, for f, g ∈ C(X), f ≡ g(M) iff d(f, g) ∈ M = h−1(0) iff (fg∗+gf∗)(x) =
0 iff f(x) = g(x) in I.

Claim that for each r ∈ I, h−1(r) = {g ∈ C(X)|g(x) = r}. Indeed, we have
that g ∈ h−1(r) iff g ≡ r(M) iff g(x) = r(x) = r. Now for each f ∈ C(X) =
∪{h−1(r)|r ∈ I}, f ∈ h−1(r) for some r. Thus f(x) = r and hence h(f) = f(x), i.e.,
h(f) = εX(x)(f). Hence h = εX(x). Thus εX is surjective. But εX is always an
embedding for each X ∈ X. Since X is compact and SC(X) is Hausdorff, εX is a
homeomorphism. Thus X ∈ Fixε. The proof is complete. �

Corollary 2.3([8, Theorem 1]). Let X and Y be both compact Hausdorff spaces.
Then C(X) and C(Y ) are isomorphic iff X and Y are homeomorphic.

For an MV -algebra A, let M(A) be the maximal ideal space of A with the
Zarisk topology τz. Let S(A) be the space of all homomorphisms of A into I with
the relative topology τp of the product topology of I |A|. Then we have the following
Lemma :

Lemma 2.4. For A ∈ A, if Φ : S(A) → M(A) is a map defined by Φ(u) = u−1(0)
for each u ∈ S(A). Then Φ is a continuous bijection.

Proof. For u ∈ S(A) let u−1(0) = M. Then M is obviously an ideal of A. Thus
A/M is embedded into I and hence it is locally finite. Thus M is a maximal ideal
of A. Clearly Φ is a well-defined injective. To show Φ is surjective, let M ∈ M(A).
Then A/M is locally finite, and hence it is embedded into I. For this embedding i,
setting u = iϕ, where ϕ is the canonical map of A onto A/M we have that u ∈ S(A)
and u−1(0) = M. Hence Φ is a bijection. For the continuity of Φ, let Φ(u) = M ∈ x
for x ∈ A, where x = {M |x /∈ M} ∈ τz. Then x 6∈ M = u−1(0), i.e., u(x) 6= 0.

Consider U = pr−1
x (I−{0}) which is an open set in S(A), where prx is the xth-

projection. Claim that Φ(U) ⊂ x. Indeed, if v ∈ U then v(x) ∈ I − {0}, v(x) 6= 0.
Thus x 6∈ v−1(0) = Φ(v) and hence Φ(v) ∈ x. Since {x|x ∈ A} is a basis for τz, Φ
is continuous. �

Corollary 2.5. S(A) is compact in τp iff S(A) and M(A) are homeomorphic.

Proof. By Lemma 2.4, Φ : S(A) → M(A) is a continuous bijection. If S(A) is
compact, since M(A) is always T2 [2], then we have Φ is a closed map. Thus Φ is
a homeomorphism. The converse is trivial. �

Corollary 2.6. For A ∈ Mv, C(M(A)) is a subalgebra of C(S(A)).

Proof. Let F : C(M(A)) → C(S(A)) be the function defined by F (h) = h ◦ Φ
for each h ∈ C(M(A)), where Φ is the same Φ in above Lemma 2.4. Since Φ is
a continuous bijection, F is injective. Moreover F is an MV -homomorphism. In-
deed, clearly for any h1, h2 ∈ C(M(A)), F (h1 + h2) = F (h1) + F (h2). For each
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u ∈ S(A), F (h∗)(u) = h∗(Φ(u)) = 1 − h(Φ(u)) = 1 − F (h)(u) = (F (h))∗(u). Thus
F (h∗) = F (h)∗ for each h ∈ C(M(A)). �

Theorem 2.7. An MV -algebra A is semi-simple iff A is isomorphic to a subalgebra
of C(X) for some Tychonoff space X.

Proof. Let A be a semi-simple MV -algebra. By [8], A is a subalgebra of C(M(A))
where M(A) is the space of maximal ideals. By Corollary 2.6, A is a subalgebra
of C(S(A)) and S(A) is a Tychonoff space because S(A) is embedded in I |A|. Con-
versely if A is a subalgebra of C(X) for some Tychonoff space X, since C(X) is
embedded into I |X|, A is semi-simple. �

Let S(A) be the full isomorphism closed subcategory of X consisting of S(A) for
all A ∈ A, and let CompH be the full subcategory of X consisting of all compact
Hausdorff spaces in X, and let BooSp be the full subcategory of X consisting of
all Boolean spaces in X.

Then we have the following Theorem :

Theorem 2.8. S(A)∩ CompH=BooSp via S ` C.

Proof. Let X ∈ S(A) ∩CompH. Then X = S(A) for some A ∈ A. Since S(A) is
compact in τp, by Corollary 2.5 S(A) and M(A) are homeomorphic. But since A is
semi-simple, M(A) is a Boolean space. Thus X ∈ BooSp.

Conversely if X ∈ Boolean Space then by Theorem 2.2, εX is a homeomorphism,
i.e., X ∼= SC(X). Let A = C(X) ∈ A. Then S(A) ∼= X ∈ CompH and X ∈ S(A).
�

3. Residuated l-monoids

By a ∧-semilattice-ordered monoid(= ∧ − l−monoid), we mean a system M =
(|M |, +, ∧, 0, 1) satisfying the followings :

(i) (|M |,+, 0) is a commutative monoid.

(ii) (|M |,∧) is a ∧-semilattice with 0 and 1.

(iii) x + (y ∧ z) = (x + y) ∧ (x + z) for any x, y, z ∈ M.

By a residuated ∧ − l−monoid, we mean a ∧ − l−monoid M in which for each
a ∈ M there exists the least element a∗ of {x ∈ M |a + x = 1} which satisfies
a∗∗ = a.

The dual notion of a ∧ − l−monoid is defined as follows :

By a ∨-semilattice-ordered monoid (= ∨ − l−monoid) we mean a system M =
(|M |, ·,∨, 0, 1) satisfying the following :

(i) (|M |, ·, 1) is a commutative monoid.

(ii) (M,∨) is a ∨-semilattice with 0 and 1.
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(iii) x(y ∨ z) = (xy) ∨ (xz) for any x, y, z ∈ M.

A ∨− l−monoid is said to be residuated if for each a ∈ M there exists the greatest
element a∗ of {x ∈ M |a · x = 0} which satisfies a∗∗ = a.

Although we define separately ∧− l−monoid and its dual notion ∨− l−monoid,
we can show that these two systems are the same notions as long as they are both
residuated, as we can show by the following :

Lemma 3.1. If M is a residuated ∧ − l−monoid then M is also a residuated
∨ − l−monoid and conversely.

Proof. Since x = x∗∗ for each x ∈ M, we have x ≤ y (iff x ∧ y = x) iff y∗ ≤ x∗ by
definition of ∗-operation.
Then clearly x ∨ y = (x∗ ∧ y∗)∗ is the least upper bound of x and y in M. For any
a, x ∈ M we have that a∗ ≤ x iff a + x = 1 which is equivalent to that x∗ ≤ a iff
a∗ ·x∗ = 0, where a∗ ·x∗ = (a+x)∗, that is equivalent to that y ≤ a∗ iff ay = 0 for any
a and y ∈ M. Hence ∗-operation of M is the same ∗-operation of the ∨− l-monoid
induced by M. The other requirments are obvious. �

In the following, we call either residuated (∧ or∨) l-monoid a residuated l-
monoid simply.

Definition 3.2. Let M be a residuated l-monoid. If M satisfies the following
conditions :

(a) for x, y ∈ M,x∗(x∗y)∗ = y∗(y∗x)∗

(b) for x, y ∈ M,xy∗ ∧ x∗y = 0

then we say that M has the commuting property.

Our aim is that any residuated l-monoid satisfying the commuting property has
an MV -algebra structure so that it can be segmently embedded into an l-group.
The crucial argument here is that the lattice-operations of M are actually those of
the MV -algebra obtained from M.

Firstly we have the following obvious Lemma :

Lemma 3.3. If A is an MV -algebra then M(A) = (|A|,+, ·, ∗,∨,∧, 0, 1) forms
a residuated l-monoid with the commutating property, where x ∨ y = x + x∗y and
x ∧ y = x(x∗ + y).

Conversely we have the following Theorem :

Theorem 3.4. If M is a residuated l-monoid satisfying the commuting property,
then M becomes an MV -algebra, denoted by A(M), whose lattice-operations ∨
and ∧ are actually the same as those operations ∨ and ∧ of M, respectively.

Proof. Evidently from the structures of M (both structures of residuated ∨ and
∧-semi lattice ordered monoid), all the axioms of an MV -algebra hold except for
the commuting property, but we assume the commuting property. Thus M forms
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an MV -algebra denoted by A(M). So A(M) has its own lattice-operations : x ∨
y = y ∨ x = x + x∗y and x ∧ y = y ∧ x = x(x∗ + y) for all x and y ∈ A(M).
Thus the first part of the proof of the theorem is complete. We however note that
x≤y (iff x ∨ y = y) for x, y ∈ M is not necessary to be the same as x ≤ y (iff
x ∨ y = y) for x, y ∈ A(M) as yet.

For the proof of the second part of theorem we need the following several Lem-
mas.

Lemma 3.5. In M, we have that x ≤ y iff xy∗ = 0 for each x, y ∈ M.

Proof. x ≤ y means x∨y = y. Thus y∗(x∨y) = 0 which implies y∗x = 0. Conversely,
y∗x = 0 means that x ≤ y∗∗ by definition of ∗-operation of M, i.e., x ≤ y. �

Lemma 3.6. In M,x ∨ y ≤ x + x∗y(= x ∨ y) for all x, y.

Proof. (x ∨ y)(x + x∗y)∗ = [x∗(x + y∗)](x ∨ y) = [xx∗(x + y∗)] ∨ [yx∗(x + y∗)] =
(yx∗)(yx∗)∗ = 0. �

Lemma 3.7. In M, (x + y)z ≤ xz + y for all x, y, z.

Proof. [(x + y)z](xz + y)∗ = [(x + y)z][(xz)∗y∗] = [y∗(x + y)][z(z∗ + x∗)] = (y∗ ∧
x) · (z ∧ x∗) = (x ∧ y∗)(x∗ ∧ z) = x(x∗ + y∗) · x∗(x + z) = 0. �

Lemma 3.8. In M, x + x∗y ≤ x ∨ y, i.e., x ∨ y ≤ x ∨ y for all x, y.

Proof.
(x + x∗y)(x ∨ y)∗ = (x + x∗y)(x∗ ∧ y∗)
≤ x · (x∗ ∧ y∗) + x∗y by Lemma 3.7,
≤ x · x∗ + x∗y = x∗y.

Similarly (y + y∗x)(x ∨ y)∗ ≤ y∗x. By the commuting property (a) and
(b), (x + x∗y)(x ∨ y)∗ ≤ x∗y ∧ y∗x = 0. Hence we have x ∨ y ≤ x ∨ y. �
By lemmas 13 and 15, we have x ∨ y = x ∨ y and dually x ∧ y = x ∧ y in M or
in A(M). And hence the partial ordering ≤ of M is the same as that ≤ of A(M).
The proof of theorem is complete. �

Corollary 3.9. A residuated l-monoid M is segmently embedded into an l-group
G with order unit iff M has the commuting property.

Consider the category Mv of MV -algebras and their homomorphisms and the
category Lm of residuated l-monoids with the commuting property and their l-
monoid-homomorphisms preserving ∗-operations.

Let Φ : Mv → Lm be the functor defined by Φ(A) = M(A) for each A ∈ Mv. If
f is an MV -morphism in Mv then Φ(f) is clearly an l-monoid morphism preserving
∗.

Now we define Ψ : Lm → Mv by Ψ(M) = A(M) for each M ∈ Lm. And if ϕ is
an l-monoid-morphism preserving ∗, then obviously Ψ(ϕ) is an MV -morphism.

Let Φ(A) = M(A) for an MV -algebra. Then from the above construction of
M(A), the underlying sets |A| of A and A of M(A) are the same. Similarly for
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Ψ(M) = A(M) for M ∈ Lm, |M | = |A(M)|. Thus |A(M(A)| = |A|. The operations
of A(M(A)) and A are coincide. Hence it easy to see Ψ ◦ Φ = idMv

. Similarly
Φ ◦Ψ = idLm

.

It is easy to see the following Theorem :

Theorem 3.10. The categories Mv and Lm are categorically equivalent via Φ and
Ψ.

Corollary 3.11. The categories Lm and that of l-groups with order unit and their
l-group-homomorphisms preserving order units are categorically equivalent.
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