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Pascal Triangle and Properties of Bipartite Steinhaus Graphs
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Abstract. In this paper, we investigate the number of ones in rows of Pascal’s Rectangle.

Using these results, we determine the existence of regular bipartite Steinhaus graphs. Also,

we give an upper bound for the minimum degree of bipartite Steinhaus graphs.

1. Introduction

Let T = a11a12 · · · a1n be an n-long string of zeros and ones with a11 = 0.
The Steinhaus graph G, generated by T has as its adjacency matrix, the Steinhaus
matrix, A(G) = [aij ] which is obtained from the following, called the Steinhaus
property: ai,j ≡ ai−1,j−1 + ai−1,j (mod 2) if 1 < i < j ≤ n. In this case, T is call
the generating string of G. A Steinhaus triangle is the upper-triangular part of a
Steinhaus matrix (excluding the diagonal) and hence, is generated by the first row
(which is the generating string) in the triangle. It is obvious that there are exactly
2n−1 Steinhaus graphs of order n. The vertices of a Steinhaus graph are usually

Figure 1 Steinhaus graph with the generating string 00110110
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0 0 1 1 0 1 1 0
0 0 1 0 1 1 0 1
1 1 0 1 1 0 1 1
1 0 1 0 0 1 1 0
0 1 1 0 0 1 0 1
1 1 0 1 1 0 1 1
1 0 1 1 0 1 0 0
0 1 1 0 1 1 0 0
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labelled by their corresponding row numbers. In Figure 1, the Steinhaus graph
generated by 00110110 is pictured.

Steinhaus in [9] asked if there were Steinhaus triangles containing the same
number of zeros and ones and Harborth [7] answered this affirmatively by showing
that for each n, n ≡ 0, 1 (mod 4), there are at least four strings of length n − 1
that generate such triangles. In particular, bipartite Steinhaus graphs were studied
in [3], [4] and [6]. Also, conditions and conjectures on the existence for regular
Steinhaus graphs were given in [2].

We now present some facts concerning Pascal’s rectangle modulo two (see Figure
2). The rows of the rectangle are labelled R∗

1, R
∗
2, · · · , and so the kth element of

R∗
n is 0 if k > n and is

(
n−1
k−1

)
(mod 2) if 1 ≤ k ≤ n. We denote by Rn,k the string

formed by the first k elements of R∗
n and we set Rn = Rn,n. If T is a string of zeros

and ones, then T k is the string T concatenated with itself k−1 times. For example,
if T = 01, then T 4 = 01010101.

Figure 2 Pascal’s rectangle of length 8
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1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

In this paper, bxc is the floor of x and dxe is the ceiling of x. We denote log2(x)
by lg(x). Also, if k is a positive integer, then let K = 2dlg(k)e and T = RK−k+1,K . In
[4], the generating strings for bipartite Steinhaus graphs were described as follows.

Theorem 1.1([4]). A Steinhaus graph is bipartite if and only if its generating
string is a prefix of either 0kT i2m

0K2m

or 0kT 2j

0m for each positive integer k, odd
positive integer i larger than 1, non-negative integers j,m.

In [6], the tight bound for number of bipartite Steinhaus graphs was described
as follow.

Theorem 1.2([6]). Let b(n) be the number of bipartite Steinhaus graph with n
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vertices. For n ≥ 4

d1
8
(17n− 22)e ≤ b(n) ≤ b1

2
(5n− 7)c.

2. Pascal’s triangle and some results of bipartite Steinhaus graphs

First, among rows of the same length in Pascal’s rectangle, we want to deter-
mine the numbers of ones in two consecutive rows. For a positive integer k and
0 ≤ r ≤ 3, let the string of R4k+r be denoted by Tk,1,r · · ·Tk,i,r · · ·Tk,k,rTr, where
Tk,i,r is a string of length 4 consisting of (4i − 3)th, · · · , (4i)th digits and Tr the
last r digits in R4k+r respectively. For example, R4 = T1,1,0 is 14 i.e. 1111. Also,
R9 = T2,1,1T2,2,1T1 is 1414. Hereafter, we denote Tk,i,0 to Tk,i. By induction on k,
we get to the following two facts.

If both Tk−1,i−1 and Tk−1,i are either 14 or 04, then Tk,i is 04.

If either Tk−1,i−1 or Tk−1,i is 14 and the other is 04, then Tk,i is 14.

This gives a recurrence relation for Tk,i similar to the binomial coefficient re-
currence,

(
k−1
i−1

)
+

(
k−1

i

)
=

(
k
i

)
. Note that Tk,i is 04 if

(
k−1
i−1

)
is even, is 14 if

(
k−1
i−1

)
is odd. If we regard Tk,i − 14 or 04 as either 1 or 0 respectively, then Tk,i

′
s sat-

isfy the binomial coefficient recurrence. It is straightforward to show that Tk,i,1 is
either 0000 or 1000, Tk,i,2 is either 0000 or 1100, and that Tk,i,3 is either 0000 or
1010. Next, we compute the numbers of ones in some consecutive rows in Pascal’s
Rectangle. First, we start with Lucas’s Theorem.

Theorem 2.1([8]). Let p be prime and let n =
∑

aip
i and m =

∑
bip

i be the
p-ary expansions of positive integers n and m. Then(

n

m

)
≡

(
a0

b0

)(
a1

b1

)
· · · (mod p).

Lemma 2.2. For 0, k < 2m, Rk+2m = Rk02m−kRk.

Proof. When p = 2, we get to the following by Theorem 2.1.
(

n
m

)
is odd, i.e.(

n
m

)
≡ 1 (mod 2) if and only if whenever m has a 1 as its i−th binary digit, then

so does n. Since for k < j ≤ 2m, j does not have 2m in binary expansion, the fact
above gives

(
k+2m

j−1

)
≡ 0 (mod 2). For 1 ≤ j ≤ k and k + 1 ≤ j ≤ k + 2m, use above

fact again. �

Let n be a positive integer such that the number of ones in Rn is equal to the
number of ones in Rn+1. Note that neither n nor n + 1 can be a power of 2. Let
n = k+2m where k < 2m. By Lemma 2.2, the number of ones in Rn is two times of
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the number of ones in Rk. So, the number of ones in Rk is equal to the number of
ones in Rk+1. By continuing this process, we get n = 4k +2, for some non-negative
integer k. The next Theorem will show that the converse is also true.

Theorem 2.3. Let n be a positive integer. Then the number of ones in Rn is equal
to the number of ones in Rn+1 if and only if n = 4k + 2, for some non-negative
integer k.

Proof. Let n = 4k + r for some k and r, where 0 ≤ r ≤ 3.

Case 1 r = 1.
Note that Tk,i,1 is either 1000 or 0000 for 1 ≤ i ≤ k and T1 = 1. If Tk,i,1 is
1000, then Tk,i,2 is 1100 for 1 ≤ i ≤ k. If Tk,i,1 is 0000, then Tk,i,2 is 0000 for
2 ≤ i ≤ k. Moreover, T2 = 11. So, the number of ones in R4k+1 is exactly
half of the number of ones in R4k+2.

Case 2 r = 2.
Note that Tk,i,2 is either 1100 or 0000 for 1 ≤ i ≤ k. If Tk,i,2 is 1100, then
Tk,i,3 is 1010 for 1 ≤ i ≤ k. If Tk,i,2 is 0000, then Tk,i,3 is 0000 for 2 ≤ i ≤ k.
Moreover, T3 = 101. So, the number of ones in R4k+2 is equal to the number
of ones in R4k+3.

Case 3 r = 3.
Note that Tk,i,3 is either 1010 or 0000 for 2 ≤ i ≤ k. If Tk,i,3 is 1010 then
Tk,i,4 is 1111 for 1 ≤ i ≤ k. If Tk,i,3 is 0000 then Tk,i,4 is 0000 for 2 ≤ i ≤ k.
Moreover, T4 = 1111. So, the number of ones in R4k+3 is not equal to (in
fact, half of) the number of ones in R4k+4.

Case 4 r = 0.
This case is clear.

Hence by combining all cases, the proof is completed. �

We divide all generating strings of bipartite Steinhaus graphs into two types,
0kT j0m for m > 0 and 0kT j . First, let a11a12 · · · a1n be a generating string of a
bipartite steinhaus graph. Let a11a12 · · · a1n be 0kT j0m for m > 0. Since T =
RK−k+1, the degrees of vertices 1, 2, and 3 are not equal by Theorem 2.3. If
a11a12 · · · a1n is a prefix of 0kT j , then the degree of vertex k +1 is k and the degree
of vertex k+2 is at most dk

2 e. So the degrees of three vertices are not equal. Hence,
we get to the following result:

Theorem 2.4. There are no nontrivial regular bipartite Steinhaus graphs with at
least three vertices.

Finally, we find an upper bound for minimum degrees of bipartite Steinhaus
graphs. Let G be a nonempty bipartite Steinhaus graph with n ≥ 8 vertices.
Observe that the first k-long string a1,k+1a2,k+1 · · · ak,k+1 in (k + 1)th column of
A(G) are all ones. So, the first k-long string a1,k+2a2,k+2 · · · ak,k+2 in (k + 2)th

column of A(G) are alternatively zero and one.
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Lemma 2.5. If a11a12 · · · a1n is 0kT j0m for some m > 0, then the minimum
degree δ(G) is at most n

4 .

Proof. Note that the (n-k)-long string ak,k+1ak,k+2 · · · ak,n in the kth row of A(G)
is 1Kj

0m. So degree of vertex k + 2 is given by∑
i=1,··· ,k+1

ai,k+2 +
∑

i=k+3,...,n

ak+2,i,

which is at most k+4
2 . But when j = 1, the vertex k − (K

2 + 1) is of degree 2. If
j ≥ 2, it is not difficult to deduce that n ≥ 2k + 8 from n ≥ k + K + m for k ≥ 5.
When 1 ≤ k ≤ 4, it is straightforward. This gives that the minimum degree δ(G)
of G is at most n

4 . �

Theorem 2.6. For any bipartite Steinhaus graph G with at least 3 vertices, δ(G)
is less than bn

4 c.
Proof. Assume that a11a12 · · · a1n is a prefix of 0kT j . If a11a12 · · · a1n contains
0kT , the degree of vertex k + K is one because all entries below kth row in upper
triangle of A(G) are zeros and the string T = RK−k+1,K generates the k-long string
a1,k+Ka2,k+K · · · ak,k+K which is 0k−11. If a11a12 · · · a1n is a proper prefix of 0kT ,
the vertex k − (K

2 + 1) is of degree 2. By combining Lemma 2.5, the proof is com-
pleted. �
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