KYUNGPOOK Math. J. 48(2008), 317-321

Normal Families and Shared Values of Meromorphic Functions

Chao Meng

Department of Mathematics, Shandong University, Jinan 250100, Shandong, China e-mail: mengchao@mail.sdu.edu.cn

ABSTRACT. Some criteria for determining the normality of the family F of meromorphic functions in the unit disc, which share values depending on $f \in F$ with their derivatives is obtained. The new results in this paper improve some earlier related results given by Pang and Zalcman [3], Fang and Zalcman [2], A. P. Singh and A. Singh [5].

1. Introduction, definitions and main results

Let f and g be meromorphic functions on a domain D in C, and let a and b be complex numbers. If g(z) = b whenever f(z) = a, we write

$$f(z) = a \Rightarrow g(z) = b.$$

In a different notation, we have $\overline{E}_f(a) \subset \overline{E}_g(b)$, where $\overline{E}_h(c) = h^{-1}(c) \cap D = \{z \in D : h(z) = c\}$. If $f(z) = a \Rightarrow g(z) = b$ and $g(z) = b \Rightarrow f(z) = a$, we write

$$f(z) = a \Leftrightarrow g(z) = b.$$

If $f(z) = a \Leftrightarrow g(z) = a$, we say that f and g share a on D.

Schwick is probably the first to find a connection between the normality criterion and shared values of meromorphic functions. He proved the following theorem.

Theorem A([4]). Let F be a family of meromorphic functions in the unit disc Δ , and let a_1 , a_2 , a_3 be distinct complex numbers. If f and f' share a_1 , a_2 and a_3 for every $f \in F$, then F is normal in Δ .

Pang and Zalcman extended the above result as follows.

Theorem B([3]). Let F be a family of meromorphic functions in the unit disc Δ and let a and b be distinct complex numbers and c be a nonzero complex number. If for every $f \in F$, $f(z) = 0 \Leftrightarrow f'(z) = a$ and $f(z) = c \Leftrightarrow f'(z) = b$, then F is normal in Δ .

Received December 18, 2007.

²⁰⁰⁰ Mathematics Subject Classification: 30D45, 30D35.

Key words and phrases: meromorphic function, shared value, normal family.

³¹⁷

Chao Meng

In 2001, Fang and Zalcman proved the following result.

Theorem C([2]). Let F be a family of meromorphic functions in the unit disc Δ and let b, c and d be nonzero complex numbers such that $d \neq b$. Suppose that for each $f \in F$, $f(z) = 0 \Rightarrow f'(z) = b$ and $f'(z) = d \Rightarrow f(z) = c$. Then F is normal in Δ so long as $b \neq (m + 1)d$, $m = 1, 2, 3, \cdots$.

In Theorem B and Theorem C the constants are the same for each $f \in F$. In 2004, A. P. Singh and A. Singh proved that the condition for the constants to be the same can be relaxed to some extent. More precisely, they proved the following theorem.

Theorem D([5]). Let F be a family of meromorphic functions in the unit disc Δ . For each $f \in F$ let a_f , b_f , c_f be distinct nonzero complex numbers such that $(a_f b_f/c_f^2) = M$ for some constant M. Let the spherical distance σ between the points a_f , b_f , c_f satisfy

$$\min\{\sigma(a_f, b_f), \sigma(b_f, c_f), \sigma(c_f, a_f)\} \ge m$$

for some m > 0. Let $f(z) = 0 \Leftrightarrow f'(z) = a_f$ and $f(z) = c_f \Leftrightarrow f'(z) = b_f$. Let $M = (ab/c^2)$, where a, b, c are distinct. If the elements of $\overline{E}_f(c_f)$ and $\overline{E}_f(0)$ are the only solutions of

$$f'(z) = \frac{a_f b}{a} (1 - (\frac{1}{c_f} - \frac{a}{ca_f})f(z))^2$$

and

$$f'(z) = a_f (1 - (\frac{1}{c_f} - \frac{a}{ca_f})f(z))^2$$

respectively, then F is normal in Δ .

Now the following problem is considered: Is it possible to relax the nature of sharing values in Theorem D ? In this paper, we prove the following theorem which answers the above question.

Theorem 1. Let F be a family of meromorphic functions in the unit disc Δ . For each $f \in F$ let a_f , b_f , c_f be distinct nonzero complex numbers such that $(a_f b_f / c_f^2) = M$ for some constant M. Let the spherical distance σ between the points a_f , b_f , c_f satisfy

$$\min\{\sigma(a_f, b_f), \sigma(b_f, c_f), \sigma(c_f, a_f)\} \ge m$$

for some m > 0. Let $f(z) = 0 \Rightarrow f'(z) = a_f$ and $f'(z) = b_f \Rightarrow f(z) = c_f$. Let $M = (ab/c^2)$, where a, b, c are distinct and $a \neq (m+1)b, m = 1, 2, 3, \cdots$. If the elements of $\overline{E}_f(c_f)$ are the only solutions of

$$f'(z) = \frac{a_f b}{a} (1 - (\frac{1}{c_f} - \frac{a}{ca_f}) f(z))^2,$$

then F is normal in Δ .

Remark. Theorem 1 removes the restriction on $\overline{E}_f(0)$ of Theorem D and the nature of sharing values is relaxed.

If the meromorphic functions in F and their derivatives share a_f bounded by some constant M, and αa_f respectively, then we shall prove the following theorem.

Theorem 2. Let F be a family of meromorphic functions on the unit disc Δ . For each $f \in F$ let there exist a_f $(0 < |a_f| \le M$ for some constant M) and αa_f $(\alpha \ne 1, 2, 3, \dots$ is a constant) and $f(z) = a_f \Rightarrow f'(z) = a_f$, $f'(z) = \alpha a_f \Rightarrow f(z) = \alpha a_f$. Further let the elements of $\overline{E}_f(\alpha a_f)$ be the only solutions of

$$f'(z) = \frac{a_f b}{a} (1 - A_f (f(z) - a_f))^2,$$

where $A_f = ((1/(\alpha - 1)a_f) - (a/ca_f))$, a is any nonzero constant, $b = \alpha a$ and $c = (\alpha - 1)a$. Then F is normal in Δ .

2. Some lemmas

We need the following lemmas in the proof of Theorem 1 and Theorem 2.

Lemma 1([1]). The Mobius map $g(z) = \frac{az+b}{cz+d}$, ad-bc = 1 satisfies the Lipschitz condition

$$\sigma(g(z), g(w)) \le \frac{\pi}{2} \|g\|^2 \sigma(z, w),$$

where $||g||^2 = |a|^2 + |b|^2 + |c|^2 + |d|^2$.

The proof is immediate since from [5]

$$\sigma_0(g(z), g(w)) \le ||g||^2 \sigma_0(z, w),$$

where σ_0 is the spherical metric, and the spherical metric and chordal metric σ are related by

$$\frac{2}{\pi}\sigma_0(z,w) \le \sigma(z,w) \le \sigma_0(z,w).$$

Lemma 2([1]). Let m be any positive number. Then the Mobius transformation g which satisfies $\sigma(g(a), g(b)) \ge m$, $\sigma(g(b), g(c)) \ge m$, $\sigma(g(c), g(a)) \ge m$ for some constant a, b and c, also satisfies the uniform Lipschitz condition

$$\sigma(g(z), g(w)) \le k_m \sigma(z, w),$$

where k_m is a constant depending on m.

3. Proof of Theorem 1

For each $f \in F$, define a Mobius map g_f by

$$q_f(z) = \frac{z}{Az+B},$$

where $A = \frac{1}{c_f} - \frac{a}{ca_f}$ and $B = \frac{a}{a_f}$. Then clearly we have

$$q_f^{-1}(z) = \frac{Bz}{1 - Az}$$

and

$$(g_f^{-1})'(z) = \frac{B}{(1 - Az)^2}$$

so that $g_f^{-1}(0) = 0$, $g_f^{-1}(c_f) = c$, $(g_f^{-1})'(0) = \frac{a}{a_f}$, $(g_f^{-1})'(c_f) = \frac{b}{b_f}$.

Now if z_0 is such that $f(z_0) = 0$ then since $f(z) = 0 \Rightarrow f'(z) = a_f$ we have $f'(z_0) = a_f$ and so $(g_f^{-1} \circ f)(z_0) = g_f^{-1}(0) = 0$ and $(g_f^{-1} \circ f)'(z_0) = (g_f^{-1})'(f(z_0))f'(z_0) = a$.

Now we show that $g_f^{-1} \circ f(z) = 0 \Rightarrow (g_f^{-1} \circ f(z))' = a$. Let z_1 is such that $(g_f^{-1} \circ f)(z_1) = 0$, then $(g_f^{-1} \circ f)(z_1) = 0 = g_f^{-1}(0)$. Also g_f^{-1} being a Mobius map, is one-to-one so that $f(z_1) = 0$ and so $f'(z_1) = a_f$. Thus $(g_f^{-1} \circ f(z_1))' = a$.

Next we show that $(g_f^{-1} \circ f(z))' = b \Rightarrow g_f^{-1} \circ f(z) = c$. Let z_2 is such that $(g_f^{-1} \circ f(z_2))' = b$. Then $(g_f^{-1})'(f(z_2))f'(z_2) = b$ and so

(1)
$$f'(z_2) = \frac{a_f b}{a} (1 - (\frac{1}{c_f} - \frac{a}{ca_f}) f(z_2))^2.$$

Since only the elements of $\overline{E}_f(c_f)$ satisfy (1), it follows that $f(z_2) = c_f$ and so $(g_f^{-1} \circ f)(z_2) = c$. Thus $(g_f^{-1} \circ f(z))' = b \Rightarrow g_f^{-1} \circ f(z) = c$.

Thus by Theorem C, the family $G = \{(g_f^{-1} \circ f) : f \in F\}$ is normal and hence equicontinuous in Δ . Therefore given $(\epsilon/k_m) > 0$, where k_m is the constant of Lemma 2, there exist $\delta > 0$ such that for the spherical distance $\sigma(x, y) < \delta$,

$$\sigma((g_f^{-1}\circ f)(x),(g_f^{-1}\circ f)(y))<\frac{\epsilon}{k_m}$$

for each $f \in F$. Hence by Lemma 2

(2)
$$\sigma(f(x), f(y)) = \sigma((g_f \circ g_f^{-1} \circ f)(x), (g_f \circ g_f^{-1} \circ f)(y)) \\ \leq k_m \sigma((g_f^{-1} \circ f)(x), (g_f^{-1} \circ f)(y)) < \epsilon.$$

320

Thus the family F is equicontinuous in Δ . This completes the proof of Theorem 1.

4. Proof of Theorem 2

Let $b_f = \alpha a_f$ and $c_f = (\alpha - 1)a_f$ so that $a_f b_f / c_f^2$ is the constant $\alpha / (\alpha - 1)^2$. For each $f \in F$, define $g_f(z) = f(z) - a_f$. Let $G = \{g_f : f \in F\}$. Then clearly

(3)
$$g_f(z) = 0 \Rightarrow f(z) = a_f \Rightarrow f'(z) = a_f \Rightarrow g'_f(z) = a_f$$

and

(4)
$$g'_f(z) = b_f \Rightarrow f'(z) = b_f \Rightarrow f(z) = b_f \Rightarrow g_f(z) = c_f.$$

From the assumption of Theorem 2, we get that the elements of $\overline{E}_{g_f}(c_f)$ are the only solutions of

$$g'_f(z) = \frac{a_f b}{a} (1 - A_f g_f(z))^2.$$

Hence by Theorem 1, G is normal in Δ , and hence given $\epsilon > 0$, there exists $\delta > 0$ for all x, y such that $\sigma(x, y) < \delta$, then we have $\sigma(g_f(x), g_f(y)) < \epsilon$ for every $f \in F$. Now define $R_f(z) = z + a_f$, then each $R_f(z)$ is a Mobius map and $R_f(g_f(z)) = f(z)$. Hence by Lemma 1

(5)
$$\sigma(f(x), f(y)) = \sigma(R_f(g_f(x)), R_f(g_f(y)))$$
$$\leq \|R_f\|^2 \frac{\pi}{2} \sigma(g_f(x), g_f(y))$$
$$\leq (2 + M^2) \frac{\pi}{2} \epsilon.$$

Hence F is normal in Δ . This completes the proof of Theorem 2.

References

- [1] A. F. Beardon, Iteration of Rational Functions, Springer-Verlag, New York, 1991.
- [2] M. L. Fang and L. Zalcman, Normal families and shared values of meromorphic functions II, Comput. Methods Funct. Theory, 1(2001), 289-299.
- [3] X. C. Pang and L. Zalcman, Normality and shared values, Arkiv Math., 38(2000), 171-182.
- [4] W. Schwick, Sharing values and normality, Arch Math. (Basel), 59(1992), 50-54.
- [5] A. P. Singh and A. Singh, Sharing values and normality of meromorphic functions, Complex Variables Theory Appl., 49(2004), 417-425.