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Abstract. We give the necessary and sufficient conditions for the asymptotic stability of

the linear delay difference equation xn+1 − a2xn−1 + bxn−k = 0, n = 0, 1, · · · , where a

and b are arbitrary real numbers and k is a positive integer greater than 1. The obtained

conditions are given in terms of parameters a and b of difference equations. The method

of proof is based on arithematic of complex numbers as well as properties of analytic func-

tions.

1. Introduction

In [2] S.A. Kuruklis gave the necessary and sufficient conditions for the asymp-
totic stability of the difference equation

(A) xn+1 − axn + bxn−k = 0, n = 0, 1, · · · ,

where a and b are arbitrary real and k is a positive integer. The following is the
main result obtained in [2]:

Theorem A. Let a be a nonzero real, b an arbitrary real, and k a positive integer
greater than 1. Equation (A) is asymptotically stable if and only if |a| < k+1

k , and

|a| − 1 < b <
{
a2 − 2 |a| cos φ + 1

} 1
2 for k : odd,

|b− a| < 1 and |b| <
{
a2 − 2 |a| cos φ + 1

} 1
2 for k : even,

where φ is the solution in
(
0, π

k+1

)
of sin kθ

sin(k+1)θ = 1
|a| .

Theorem A generalizes results in [1] and [3]. The proof of Theorem A uses
the fact that a linear difference equation is asymptotically stable if and only if all
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roots of its characteristic equation lie inside the unit disk. The term xn+1 in the
difference equation (A) depends on the terms xn and xn−k. We are interested in
the situation when the term xn+1 depends on the terms xn−1 and xn−k. From this
motivation, we propose to study the following linear difference equation

(1) xn+1 − a2xn−1 + bxn−k = 0, n = 0, 1, · · · ,

where a and b are arbitrary real and k is a positive integer greater than 1. The
method of proof is based on arithematic of complex numbers as well as properties
of analytic functions. The characteristic equation of (1) is

(2) λk+1 − a2λk−1 + b = 0.

In the case that a 6= 0, if we let µ = λ
a then (2) becomes

(3) F (µ) ≡ µk+1 − µk−1 + c = 0,

where c = b
ak+1 . Thus roots of (2) are inside the unit disk if and only if roots of (3)

are inside the disk |µ| < 1
|a| , a 6= 0. For c = 0, (3) becomes

F (µ) ≡ µk−1(µ2 − 1) = 0,

which has a root at 0 of multiplicity k − 1 and two simple roots at −1 and 1. As
c varies the roots of (3) move in a continuous fashion.

2. Main results

To prove our results we will need several lemmas which deal with the behavior
of the roots of (3) as c varies. The first three lemmas deal with the locations of real
roots of (3) where the proofs are similar to Lemma 1 and Lemma 2 in [2] and will
be omitted.

Lemma 2.1. Let k be a positive integer greater than 1 and let c be a nonzero real

number. Let β =
(

k−1
k+1

) k−1
2

(
2

k+1

)
and α =

√
k−1
k+1 .

(a) c > 0 and k is even. In this case (3) has one negative real root in (−∞,−1).
Furthermore, if 0 < c < β, then (3) has two positive real roots, one in (0, α)
and the other in (α, 1). If c = β, then α is a double root. If c > β, then (3)
does not have positive real roots.

(b) c > 0 and k is odd. In this case F (µ) is an even function. If 0 < c < β, then
(3) has two negative real roots, one in (−1,−α) and the other in (−α, 0), and
two positive real roots, one in (0, α) and the other in (α, 1). If c = β, then
−α and α are double roots of (3). If c > β, then (3) does not have real roots.

(c) c < 0 and k is even. In this case (3) has one positive real root in (1,+∞).
Furthermore, if −β < c < 0, then (3) has two negative real roots, one in
(−1,−α) and the other in (−α, 0). If c = −β then −α is a double root of
(3). If c < −β then (3) does not have real roots.
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(d) c < 0 and k is odd. In this case F (µ)is an even function and (3) has one
positive root in (1,+∞) and one negative root in (−∞,−1).

Lemma 2.2. The absolute values of the roots of (3) increase as |c| increases except
in the following cases:

(a) k even and 0 < c < β. In this case the largest positive root, which lies in
(α, 1), decreases as c increases.

(b) k odd and 0 < c < β. In this case the largest positive root, which lies in
(α, 1), decreases as c increases and the absolute value of the smallest negative
root, which lies in (−1,−α), decreases as c increases.

(c) k even and −β < c < 0. In this case the absolute value of the largest negative
root, which lies in (−α, 0), decreases as |c| increases. Let µ = r(cos θ+i sin θ)
be a root of (3). If we substitute this into (3), then equate real and imaginary
parts we obtain

(4) rk−1
{
cos (k − 1) θ − r2 cos (k + 1) θ

}
= c,

(5) rk−1
{
sin (k − 1) θ − r2 sin (k + 1) θ

}
= 0.

It follows from (5) that

(6) r2 =
sin (k − 1) θ

sin (k + 1) θ
.

From (4) and (6) we get

c = rk−1

{
cos (k − 1) θ − sin (k − 1) θ

sin (k + 1) θ
cos (k + 1) θ

}
= rk−1 sin 2θ

sin (k + 1) θ
.

Hence,

(7) c = rk−1 sin 2θ

sin (k + 1) θ
.

Moreover, as in [2] we can show that for 0 ≤ θ < 2π,

(8)
dr

dθ
> 0.

The next lemma gives us the relationship between the absolute value of c and
the arguments of the roots of (3) which lie on |µ| = 1

|a| with |a| < 1
α .
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Lemma 2.3. Let µ = r(cos θ + i sin θ), with 0 ≤ θ < 2π, be a root of (3) such that
r = 1

|a| where a is a real number satisfying |a| < 1
α . Then

(9) |c| = 1

|a|k+1

{
a4 − 2a2 cos 2θ + 1

} 1
2 .

Remark 2.1. Since a4 − 2a2 cos 2θ + 1 ≥
(
a2 − 1

)2, the square root in (9) is
legitimate. If θ = 0 or π, then

(10) |c| =
∣∣a2 − 1

∣∣
|a|k+1

and if θ = π
2 or 3π

2 , then

(11) |c| = a2 + 1

|a|k+1
.

We will now find the minimum value of |c| for which (3) has a root on the circle
|µ| = 1

|a| with |a| < 1
α . Note that the arguments of the roots of (3) certainly satisfy

(6) which also has 0 and π as solutions, although (3) might not have a positive or
negative root on |µ| = 1

|a| . Also, when k is odd then π
2 is a solution of (6) but when

k is even π
2 is not a solution of (6). However, for θ ∈ (0, π)−

{
π
2

}
we may write (6)

as

(12) S(θ) =
sin(k − 1)θ
sin(k + 1)θ

=
1
a2

.

Remark 2.2. Note that from (12) we have

(13) S (π − θ) = S (θ) .

It follows that if θ ∈
(
0, π

2

)
satisfies (12), then π − θ also satisfies (12).

Note that the arguments of all complex roots of (3) on |µ| = 1
|a| which are in

the first quadrant are solutions of (12). The following two lemmas state that if k is
an integer greater than 1 then the converse also holds.

Lemma 2.4. Assume that c 6= 0 and |a| < 1
α . Let k be a positive integer greater

than 3. Then the number of solutions of (12) in
(
0, π

2

)
is k−1

2 if k is odd and k
2 if

k is even.

Proof. Case 1. k is odd.
Assume that c > 0. Then by (6) and (7), we have sin (k − 1) θ > 0 and
sin (k + 1) θ > 0, from which it follows that

2mπ

k − 1
< θ <

(2m + 1) π

k − 1
, m = 0, 1, · · · ,

[
k − 3

4

]
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and
2nπ

k + 1
< θ <

(2n + 1) π

k + 1
, n = 0, 1, · · · ,

[
k − 1

4

]
.

Thus
2pπ

k − 1
< θ <

(2p + 1) π

k + 1
, p = 0, 1, · · · ,

[
k − 3

4

]
,

where [x] is the integer part of x.By (6), (8), and (12), S (θ) is strictly increasing
on

(
0, π

2

)
. Since S (0) = k−1

k+1 , S
(

pπ
k−1

)
= 0 and S

(
(2p+1)π

k+1

)
= +∞ for p =

1, 2, · · · ,
[

k−3
4

]
, the number of solutions of (12) when c > 0 is

[
k−3
4

]
+ 1.

Now assume that c < 0, then as in the case c > 0 we obtain

(2p + 1) π

k − 1
< θ <

(2p + 2) π

k + 1
, p = 0, 1, · · · ,

[
k − 5

4

]
.

Since S
(

pπ
k−1

)
= 0 and S

(
(2p+2)π

k+1

)
= +∞ for p = 1, 2, · · · ,

[
k−5
4

]
, the number of

solutions of (12) when c < 0 is
[

k−5
4

]
+ 1. Therefore, the total number of solutions

of (12) in
(
0, π

2

)
is

[
k−3
4

]
+

[
k−5
4

]
+ 2 and it is easy to show that this number is

equal to (k − 1)/2.
Case 2. k is even.
With the same argument as in Case 1 we obtain that the number of solutions of
(12) in

(
0, π

2

)
is

[
k−1
4

]
+

[
k−3
4

]
+ 2 and it is easy to show that this number is equal

to k/2. �

Lemma 2.5. Let k be an integer greater than 1. Then the number of solutions of
(3) which lie on |µ| = 1

|a| and in the first quadrant (0 < θ < π
2 ) where |a| < 1

α is
k−1
2 when k is odd, and k

2 if k is even.

Proof. Let µ be a root of (3) which lies on |µ| = 1
|a| . From (3) we get

(14) µk−1 − µk+1 = c.

Since c is real, we also have

(15) µk−1 − µk+1 = c,

where µ denotes the complex conjugate of µ. From (14) and (15) we obtain

µk−1 − µk+1 = µk−1 − µk+1

=
1

a2(k−1)µk−1
− 1

a2(k+1)µk+1

=
1

a2(k−1)µk−1

(
1− 1

a4µ2

)
.

It follows that

(16) a2(k+1)µ2k(1− µ2)− a4µ2 + 1 = 0.
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Since the left hand side of (16) is a polynomial of degree 2k + 2, there are 2k + 2
roots of (16). It is straightforward to check that 1

|a| and − 1
|a| are simple real roots

of (16). We will show that all other roots of (16) lie on |µ| = 1
|a| . Suppose that

µ = 1
|a|e

iθ is a root of (16) on |µ| = 1
|a| , then

a2(k+1) 1
a2k

ei2kθ(1− 1
a2

ei2θ)− a4 1
a2

ei2θ + 1 = 0

or

(17) ei2kθ =
a2ei2θ − 1
a2 − ei2θ

.

Let z = ei2θ. Then (17) becomes

(18) zk =
a2z − 1
a2 − z

.

We claim that complex roots of (18) are distinct if |a| < 1
α . We rewrite (18) as

(19) zk+1 − a2zk + a2z − 1 = 0.

Letting F (z) = zk+1 − a2zk + a2z − 1, then F ′ (z) = (k + 1) zk − a2kzk−1 + a2.
Assume that z0 is a root of (19). Then by (18) we obtain

F ′(z0) = (k + 1) zk
0 − a2kzk−1

0 + a2

= (k + 1)
(

a2z0 − 1
a2 − z0

)
− a2k

z0

(
a2z0 − 1
a2 − z0

)
+ a2.

Note also that (k + 1)
(

a2z−1
a2−z

)
− a2k

z

(
a2z−1
a2−z

)
+ a2 = 0 if and only if

(20) z =

(
1 + k + a4 (k − 1)

)
±

√
(a4 − 1)

(
a4 (k − 1)2 − (1 + k)2

)
2a2k

.

Note that

(21)

(
1 + k + a4 (k − 1)

)2 + (a4 − 1)
(
a4 (k − 1)2 − (1 + k)2

)
=

2
(
(k − 1)2a8 − 2a4 + (k + 1)2

)
and it is straightforward to show that

√
2

(
(k − 1)2a8 − 2a4 + (k + 1)2

)
is not equal

to 2a2k for any positive integer k and 0 < |a| < 1
α . Thus z in (20) are two complex

numbers which do not lie on the unit circle when 0 < |a| < 1
α . Thus for 0 < |a| < 1

α ,
(19) has k + 1 distinct roots on the unit circle. It follows that if 0 < |a| < 1

α then
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(16) has 2k +2 distinct roots on |µ| = 1
|a| . Now since (16) has two simple real roots

at 1
|a| and − 1

|a| , there are 2k distinct complex roots. Thus there are k complex roots
of (16) on the upper half plane (that is for 0 < θ < π). Now if 1

|a|e
iθ satisfies (16)

then we can show that 1
|a|e

i(π−θ) also satisfies (16). Note that π
2 is a solution of (16)

when k is odd. Therefore, the number of solutions of (3) which lie on |µ| = 1
|a| in

the first quadrant (0 < θ < π
2 ) is k−1

2 if k is odd and k
2 if k is even. This completes

the proof of Lemma 2.5. �

From Remark 2.2, Lemma 2.4, and Lemma 2.5, we have the following result.

Proposition 2.6. Assume that c 6= 0 and |a| < 1
α . Let k be an integer greater than

3. Then the arguments of the complex roots of (3) which lie on |µ| = 1
|a| are the

only solutions of (12) except when k is even where the arguments π
2 and 3π

2 are not
solutions of (12).

Remark 2.3. In [2] the author proved a result similar to Proposition 2.6 by showing
that the number of solutions of S(θ) = sin kθ

sin(k+1)θ = 1
|a| with 0 < θ < π and |a| < k+1

k

is equal to the number of complex roots of (3) which lie on the upper half plane for a
fixed value of c which is not correct (although the conclusion of his result is correct).
In fact we must show that the number of solutions of S(θ) = sin kθ

sin(k+1)θ = 1
|a| with

0 < θ < π and |a| < k+1
k is equal to the number of complex roots of (3) which lie

on |µ| = 1
|a| for different values of c (which can be shown as in Lemma 2.5 above).

Remark 2.4. Let k be an integer greater than 3. The minimum value of |c| given
in (18) for which (3) has a complex root on |µ| = 1

|a| with |a| < 1
α occurs when θ is

the solution of (12) and θ ∈
(
0, π

k+1

)
.

Remark 2.5. For k = 2 or k = 3, it is easy to show that (3) has exactly one
complex root µ = 1

|a|e
iθ0 , where θ0 ∈

(
0, π

2

)
and that θ0 is the only solution of (12)

in
(
0, π

2

)
. Thus, Proposition 1.6 holds true for k = 2 and k = 3 also.

The next four lemmas provide us with the necessary and sufficient conditions
for the roots of (3) when c 6= 0 to be inside the disk |µ| < 1

|a| .

Lemma 2.7. Let k be an odd integer greater than 1 and c > 0. Then all the roots
of (3) lie inside the disk |µ| < 1

|a| if and only if |a| < 1
α and

(22)
a2 − 1

|a|k+1
< c <

1

|a|k+1

{
a4 − 2a2 cos 2φ + 1

} 1
2 ,

where φ is the solution of sin(k−1)θ
sin(k+1)θ = 1

a2 in
(
0, π

k+1

)
.

Proof. Lemma 2.1 implies that if 1
|a| ≤ α and 0 < c ≤ β, then (3) has real roots

which lie outside the disk |µ| < 1
|a| . Hence, for all roots of (3) to be inside the disk
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|µ| < 1
|a| it is necessary that |a| < 1

α . We now consider the following two cases.
Case 1. 1 < |a| ≤ 1

α .
As c increases from 0 to β the largest positive root and the smallest negative root
of (3) move from 1 and -1 toward α and −α respectively, while all other roots move
outward away from 0. Let c1 and c2 be the values of c for which the largest positive
and the smallest negative roots, and a complex root reach the circle |µ| = 1

|a| . Then

c1 =
a2 − 1

|a|k+1
and c2 =

1

|a|k+1

{
a4 − 2a2 cos 2φ + 1

} 1
2 .

Note that c1 < c2. From Remark 2.4, the smallest value of c2 for which a complex
root of (3) lies on the circle |µ| = 1

|a| is obtained when φ is the solution of sin(k−1)θ
sin(k+1)θ =

1
a2 in

(
0, π

k+1

)
. Thus, as c increases, first the largest positive and the smallest

negative root reach the circle |µ| = 1
|a| (simultaneously) and then a complex root

reaches the circle |µ| = 1
|a| . Therefore, all the roots of (3) lie inside the disk |µ| < 1

|a|
if and only if c1 < c < c2 and (22) holds.
Case 2. |a| ≤ 1.
By Lemma 2.1, (3) has only complex roots which reach the circle |µ| = 1

|a| . Let
c2 be the values of c for which a complex root reaches the circle |µ| = 1

|a| . As in

Case 1, c2 = 1
|a|k+1

{
a4 − 2a2 cos 2φ + 1

} 1
2 and all the roots of (3) lie inside the disk

|µ| < 1
|a| if and only if 0 < c < c2 and (22) holds. �

The next three lemmas can be proved similarly to Lemma 2.7 and will be
omitted.

Lemma 2.8. Let k be an odd integer greater than 1 and c < 0. Then all the roots
of (3) lie inside the disk |µ| < 1

|a| if and only if |a| < 1and c > a2−1
|a|k+1 .

Lemma 2.9. Let k be an even integer greater than 1 and c > 0. Then all the roots
of (3) lie inside the disk |µ| < 1

|a| if and only if |a| < 1and c < 1−a2

|a|k+1 .

Lemma 2.10. Let k be an even integer greater than 1 and c < 0. Then all the
roots of (3) lie inside the disk |µ| < 1

|a| if and only if |a| < 1and c > a2−1
|a|k+1 .

We now give the necessary and sufficient conditions for the roots of (2) to be
inside the unit disk.

Lemma 2.11. Let k be an odd integer greater than 1, a nonzero real number,
and b arbitrary real number. The roots of (2) are inside the unit disk if and only

if |a| < 1
α and a2 − 1 < b <

{
a4 − 2a2 cos 2φ + 1

} 1
2 , where φ is the solution of

sin(k−1)θ
sin(k+1)θ = 1

a2 in
(
0, π

k+1

)
.

Proof. Case 1. b > 0.
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Then, c > 0 and Lemma 2.7 implies that all roots of (2) are inside the unit disk if

and only if |a| < 1
α and a2 − 1 < b <

{
a4 − 2a2 cos 2φ + 1

} 1
2 .

Case 2. b < 0.
Then, c < 0 and Lemma 2.8 implies that all roots of (2) are inside the unit disk if
and only if |a| < 1 and a2 − 1 < b. The Lemma follows from Case 1 and Case2. �

Lemma 2.12. Let k be an even integer greater than 1, a nonzero real number and
b arbitrary real number. The roots of (2) are inside the unit disk if and only if
|a| < 1 and a2 + |b| < 1.

Proof. Similar to Lemma 2.11 and will be omitted. �

From Lemma 2.11 and Lemma 2.12, we obtain the following necessary and suf-
ficient conditions for (1) to be asymptotically stable.

Theorem 2.13. Let a be a nonzero real number, b an arbitrary real number, and
k an integer greater than 1. Then for k odd, (1) is asymptotically stable if and only

if |a| < 1
α and a2 − 1 < b <

{
a4 − 2a2 cos 2φ + 1

} 1
2 , where φ is the solution of

sin(k−1)θ
sin(k+1)θ = 1

a2 in
(
0, π

k+1

)
. For k even, (1) is asymptotically stable if and only if

|a| < 1 and a2 + |b| < 1.

Remark 2.6. When a = 0 or k = 1 it is easy to show that the necessary and
sufficient conditions for (1) to be asymptotically stable is that

∣∣a2 − 1
∣∣ < 1.
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