KYUNGPOOK Math. J. 48(2008), 173-181

The Asymptotic Stability of $x_{n+1} - a^2 x_{n-1} + b x_{n-k} = 0$

PIYAPONG NIAMSUP Department of Mathematics, Faculty of Science, Chiangmai University, Chiangmai, 50200, Thailand e-mail: scipnmsp@chiangmai.ac.th

YONGWIMON LENBURY Department of Mathematics, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand e-mail: scylb@yahoo.com

ABSTRACT. We give the necessary and sufficient conditions for the asymptotic stability of the linear delay difference equation $x_{n+1} - a^2 x_{n-1} + b x_{n-k} = 0$, $n = 0, 1, \dots$, where aand b are arbitrary real numbers and k is a positive integer greater than 1. The obtained conditions are given in terms of parameters a and b of difference equations. The method of proof is based on arithematic of complex numbers as well as properties of analytic functions.

1. Introduction

In [2] S.A. Kuruklis gave the necessary and sufficient conditions for the asymptotic stability of the difference equation

(A)
$$x_{n+1} - ax_n + bx_{n-k} = 0, \quad n = 0, 1, \cdots$$

where a and b are arbitrary real and k is a positive integer. The following is the main result obtained in [2]:

Theorem A. Let a be a nonzero real, b an arbitrary real, and k a positive integer greater than 1. Equation (A) is asymptotically stable if and only if $|a| < \frac{k+1}{k}$, and

$$\begin{aligned} |a| - 1 < b < \left\{ a^2 - 2 |a| \cos \phi + 1 \right\}^{\frac{1}{2}} & for \ k : odd, \\ |b - a| < 1 & and \quad |b| < \left\{ a^2 - 2 |a| \cos \phi + 1 \right\}^{\frac{1}{2}} & for \ k : even \end{aligned}$$

where ϕ is the solution in $\left(0, \frac{\pi}{k+1}\right)$ of $\frac{\sin k\theta}{\sin(k+1)\theta} = \frac{1}{|a|}$.

Theorem A generalizes results in [1] and [3]. The proof of Theorem A uses the fact that a linear difference equation is asymptotically stable if and only if all

Received July 12, 2004, and, in revised form, December 20, 2007.

²⁰⁰⁰ Mathematics Subject Classification: 39A11.

Key words and phrases: the asymptotic stability, linear delay difference equation.

¹⁷³

roots of its characteristic equation lie inside the unit disk. The term x_{n+1} in the difference equation (A) depends on the terms x_n and x_{n-k} . We are interested in the situation when the term x_{n+1} depends on the terms x_{n-1} and x_{n-k} . From this motivation, we propose to study the following linear difference equation

(1)
$$x_{n+1} - a^2 x_{n-1} + b x_{n-k} = 0, \quad n = 0, 1, \cdots$$

where a and b are arbitrary real and k is a positive integer greater than 1. The method of proof is based on arithematic of complex numbers as well as properties of analytic functions. The characteristic equation of (1) is

(2)
$$\lambda^{k+1} - a^2 \lambda^{k-1} + b = 0$$

In the case that $a \neq 0$, if we let $\mu = \frac{\lambda}{a}$ then (2) becomes

(3)
$$F(\mu) \equiv \mu^{k+1} - \mu^{k-1} + c = 0,$$

where $c = \frac{b}{a^{k+1}}$. Thus roots of (2) are inside the unit disk if and only if roots of (3) are inside the disk $|\mu| < \frac{1}{|a|}$, $a \neq 0$. For c = 0, (3) becomes

$$F(\mu) \equiv \mu^{k-1}(\mu^2 - 1) = 0,$$

which has a root at 0 of multiplicity k - 1 and two simple roots at -1 and 1. As c varies the roots of (3) move in a continuous fashion.

2. Main results

To prove our results we will need several lemmas which deal with the behavior of the roots of (3) as c varies. The first three lemmas deal with the locations of real roots of (3) where the proofs are similar to Lemma 1 and Lemma 2 in [2] and will be omitted.

Lemma 2.1. Let k be a positive integer greater than 1 and let c be a nonzero real number. Let $\beta = \left(\frac{k-1}{k+1}\right)^{\frac{k-1}{2}} \left(\frac{2}{k+1}\right)$ and $\alpha = \sqrt{\frac{k-1}{k+1}}$.

- (a) c > 0 and k is even. In this case (3) has one negative real root in $(-\infty, -1)$. Furthermore, if $0 < c < \beta$, then (3) has two positive real roots, one in $(0, \alpha)$ and the other in $(\alpha, 1)$. If $c = \beta$, then α is a double root. If $c > \beta$, then (3) does not have positive real roots.
- (b) c > 0 and k is odd. In this case F(μ) is an even function. If 0 < c < β, then
 (3) has two negative real roots, one in (-1, -α) and the other in (-α, 0), and two positive real roots, one in (0, α) and the other in (α, 1). If c = β, then -α and α are double roots of (3). If c > β, then (3) does not have real roots.
- (c) c < 0 and k is even. In this case (3) has one positive real root in $(1, +\infty)$. Furthermore, if $-\beta < c < 0$, then (3) has two negative real roots, one in $(-1, -\alpha)$ and the other in $(-\alpha, 0)$. If $c = -\beta$ then $-\alpha$ is a double root of (3). If $c < -\beta$ then (3) does not have real roots.

(d) c < 0 and k is odd. In this case $F(\mu)$ is an even function and (3) has one positive root in $(1, +\infty)$ and one negative root in $(-\infty, -1)$.

Lemma 2.2. The absolute values of the roots of (3) increase as |c| increases except in the following cases:

- (a) k even and $0 < c < \beta$. In this case the largest positive root, which lies in $(\alpha, 1)$, decreases as c increases.
- (b) k odd and $0 < c < \beta$. In this case the largest positive root, which lies in $(\alpha, 1)$, decreases as c increases and the absolute value of the smallest negative root, which lies in $(-1, -\alpha)$, decreases as c increases.
- (c) k even and $-\beta < c < 0$. In this case the absolute value of the largest negative root, which lies in $(-\alpha, 0)$, decreases as |c| increases. Let $\mu = r(\cos \theta + i \sin \theta)$ be a root of (3). If we substitute this into (3), then equate real and imaginary parts we obtain

(4)
$$r^{k-1} \left\{ \cos (k-1) \theta - r^2 \cos (k+1) \theta \right\} = c,$$

(5)
$$r^{k-1} \left\{ \sin(k-1)\theta - r^2 \sin(k+1)\theta \right\} = 0.$$

It follows from (5) that

(6)
$$r^2 = \frac{\sin\left(k-1\right)\theta}{\sin\left(k+1\right)\theta}.$$

From (4) and (6) we get

$$c = r^{k-1} \left\{ \cos(k-1)\theta - \frac{\sin(k-1)\theta}{\sin(k+1)\theta} \cos(k+1)\theta \right\}$$
$$= r^{k-1} \frac{\sin 2\theta}{\sin(k+1)\theta}.$$

Hence,

(7)
$$c = r^{k-1} \frac{\sin 2\theta}{\sin (k+1)\theta}$$

Moreover, as in [2] we can show that for $0 \le \theta < 2\pi$,

(8)
$$\frac{dr}{d\theta} > 0.$$

The next lemma gives us the relationship between the absolute value of c and the arguments of the roots of (3) which lie on $|\mu| = \frac{1}{|a|}$ with $|a| < \frac{1}{\alpha}$.

Lemma 2.3. Let $\mu = r(\cos \theta + i \sin \theta)$, with $0 \le \theta < 2\pi$, be a root of (3) such that $r = \frac{1}{|a|}$ where a is a real number satisfying $|a| < \frac{1}{\alpha}$. Then

(9)
$$|c| = \frac{1}{|a|^{k+1}} \left\{ a^4 - 2a^2 \cos 2\theta + 1 \right\}^{\frac{1}{2}}.$$

Remark 2.1. Since $a^4 - 2a^2 \cos 2\theta + 1 \ge (a^2 - 1)^2$, the square root in (9) is legitimate. If $\theta = 0$ or π , then

(10)
$$|c| = \frac{|a^2 - 1|}{|a|^{k+1}}$$

and if $\theta = \frac{\pi}{2}$ or $\frac{3\pi}{2}$, then

(11)
$$|c| = \frac{a^2 + 1}{|a|^{k+1}}$$

We will now find the minimum value of |c| for which (3) has a root on the circle $|\mu| = \frac{1}{|a|}$ with $|a| < \frac{1}{\alpha}$. Note that the arguments of the roots of (3) certainly satisfy (6) which also has 0 and π as solutions, although (3) might not have a positive or negative root on $|\mu| = \frac{1}{|a|}$. Also, when k is odd then $\frac{\pi}{2}$ is a solution of (6) but when k is even $\frac{\pi}{2}$ is not a solution of (6). However, for $\theta \in (0, \pi) - \left\{\frac{\pi}{2}\right\}$ we may write (6) as

(12)
$$S(\theta) = \frac{\sin(k-1)\theta}{\sin(k+1)\theta} = \frac{1}{a^2}.$$

Remark 2.2. Note that from (12) we have

(13)
$$S(\pi - \theta) = S(\theta)$$

It follows that if $\theta \in (0, \frac{\pi}{2})$ satisfies (12), then $\pi - \theta$ also satisfies (12).

Note that the arguments of all complex roots of (3) on $|\mu| = \frac{1}{|a|}$ which are in the first quadrant are solutions of (12). The following two lemmas state that if k is an integer greater than 1 then the converse also holds.

Lemma 2.4. Assume that $c \neq 0$ and $|a| < \frac{1}{\alpha}$. Let k be a positive integer greater than 3. Then the number of solutions of (12) in $(0, \frac{\pi}{2})$ is $\frac{k-1}{2}$ if k is odd and $\frac{k}{2}$ if k is even.

Proof. Case 1. k is odd.

Assume that c > 0. Then by (6) and (7), we have $\sin(k-1)\theta > 0$ and $\sin(k+1)\theta > 0$, from which it follows that

$$\frac{2m\pi}{k-1} < \theta < \frac{\left(2m+1\right)\pi}{k-1} \quad , \quad m = 0, 1, \cdots, \left[\frac{k-3}{4}\right]$$

The Asymptotic Stability of
$$x_{n+1} - a^2 x_{n-1} + b x_{n-k} = 0$$
 177

and

$$\begin{split} &\frac{2n\pi}{k+1} < \theta < \frac{(2n+1)\,\pi}{k+1} \quad , \quad n = 0, 1, \cdots, \left[\frac{k-1}{4}\right], \\ &\frac{2p\pi}{k-1} < \theta < \frac{(2p+1)\,\pi}{k+1} \quad , \quad p = 0, 1, \cdots, \left[\frac{k-3}{4}\right], \end{split}$$

Thus

where
$$[x]$$
 is the integer part of x.By (6), (8), and (12), $S(\theta)$ is strictly increasing
on $(0, \frac{\pi}{2})$. Since $S(0) = \frac{k-1}{k+1}$, $S\left(\frac{p\pi}{k-1}\right) = 0$ and $S\left(\frac{(2p+1)\pi}{k+1}\right) = +\infty$ for $p = 1, 2, \cdots, \left[\frac{k-3}{4}\right]$, the number of solutions of (12) when $c > 0$ is $\left[\frac{k-3}{4}\right] + 1$.

Now assume that c < 0, then as in the case c > 0 we obtain

$$\frac{(2p+1)\pi}{k-1} < \theta < \frac{(2p+2)\pi}{k+1} \quad , \quad p = 0, 1, \cdots, \left[\frac{k-5}{4}\right]$$

Since $S\left(\frac{p\pi}{k-1}\right) = 0$ and $S\left(\frac{(2p+2)\pi}{k+1}\right) = +\infty$ for $p = 1, 2, \cdots, \left[\frac{k-5}{4}\right]$, the number of solutions of (12) when c < 0 is $\left[\frac{k-5}{4}\right] + 1$. Therefore, the total number of solutions of (12) in $\left(0, \frac{\pi}{2}\right)$ is $\left[\frac{k-3}{4}\right] + \left[\frac{k-5}{4}\right] + 2$ and it is easy to show that this number is equal to (k-1)/2.

Case 2. k is even.

With the same argument as in Case 1 we obtain that the number of solutions of (12) in $(0, \frac{\pi}{2})$ is $\left[\frac{k-1}{4}\right] + \left[\frac{k-3}{4}\right] + 2$ and it is easy to show that this number is equal to k/2.

Lemma 2.5. Let k be an integer greater than 1. Then the number of solutions of (3) which lie on $|\mu| = \frac{1}{|a|}$ and in the first quadrant $(0 < \theta < \frac{\pi}{2})$ where $|a| < \frac{1}{\alpha}$ is $\frac{k-1}{2}$ when k is odd, and $\frac{k}{2}$ if k is even.

Proof. Let μ be a root of (3) which lies on $|\mu| = \frac{1}{|a|}$. From (3) we get

(14)
$$\mu^{k-1} - \mu^{k+1} = c$$

Since c is real, we also have

(15)
$$\overline{\mu}^{k-1} - \overline{\mu}^{k+1} = c,$$

where $\overline{\mu}$ denotes the complex conjugate of μ . From (14) and (15) we obtain

$$\mu^{k-1} - \mu^{k+1} = \overline{\mu}^{k-1} - \overline{\mu}^{k+1}$$

= $\frac{1}{a^{2(k-1)}\mu^{k-1}} - \frac{1}{a^{2(k+1)}\mu^{k+1}}$
= $\frac{1}{a^{2(k-1)}\mu^{k-1}} \left(1 - \frac{1}{a^4\mu^2}\right).$

It follows that

(16)
$$a^{2(k+1)}\mu^{2k}(1-\mu^2) - a^4\mu^2 + 1 = 0.$$

Since the left hand side of (16) is a polynomial of degree 2k + 2, there are 2k + 2 roots of (16). It is straightforward to check that $\frac{1}{|a|}$ and $-\frac{1}{|a|}$ are simple real roots of (16). We will show that all other roots of (16) lie on $|\mu| = \frac{1}{|a|}$. Suppose that $\mu = \frac{1}{|a|}e^{i\theta}$ is a root of (16) on $|\mu| = \frac{1}{|a|}$, then

$$a^{2(k+1)}\frac{1}{a^{2k}}e^{i2k\theta}(1-\frac{1}{a^2}e^{i2\theta}) - a^4\frac{1}{a^2}e^{i2\theta} + 1 = 0$$

or

(17)
$$e^{i2k\theta} = \frac{a^2 e^{i2\theta} - 1}{a^2 - e^{i2\theta}}.$$

Let $z = e^{i2\theta}$. Then (17) becomes

(18)
$$z^k = \frac{a^2 z - 1}{a^2 - z}.$$

We claim that complex roots of (18) are distinct if $|a| < \frac{1}{\alpha}$. We rewrite (18) as

(19)
$$z^{k+1} - a^2 z^k + a^2 z - 1 = 0.$$

Letting $F(z) = z^{k+1} - a^2 z^k + a^2 z - 1$, then $F'(z) = (k+1) z^k - a^2 k z^{k-1} + a^2$. Assume that z_0 is a root of (19). Then by (18) we obtain

$$F'(z_0) = (k+1) z_0^k - a^2 k z_0^{k-1} + a^2$$

= $(k+1) \left(\frac{a^2 z_0 - 1}{a^2 - z_0} \right) - \frac{a^2 k}{z_0} \left(\frac{a^2 z_0 - 1}{a^2 - z_0} \right) + a^2.$

Note also that $(k+1)\left(\frac{a^2z-1}{a^2-z}\right) - \frac{a^2k}{z}\left(\frac{a^2z-1}{a^2-z}\right) + a^2 = 0$ if and only if

(20)
$$z = \frac{\left(1+k+a^4\left(k-1\right)\right) \pm \sqrt{\left(a^4-1\right)\left(a^4\left(k-1\right)^2-\left(1+k\right)^2\right)}}{2a^2k}.$$

Note that

(21)
$$(1+k+a^4(k-1))^2 + (a^4-1)\left(a^4(k-1)^2 - (1+k)^2\right) = 2\left((k-1)^2a^8 - 2a^4 + (k+1)^2\right)$$

and it is straightforward to show that $\sqrt{2\left((k-1)^2a^8-2a^4+(k+1)^2\right)}$ is not equal to $2a^2k$ for any positive integer k and $0 < |a| < \frac{1}{\alpha}$. Thus z in (20) are two complex numbers which do not lie on the unit circle when $0 < |a| < \frac{1}{\alpha}$. Thus for $0 < |a| < \frac{1}{\alpha}$, (19) has k+1 distinct roots on the unit circle. It follows that if $0 < |a| < \frac{1}{\alpha}$ then

(16) has 2k + 2 distinct roots on $|\mu| = \frac{1}{|a|}$. Now since (16) has two simple real roots at $\frac{1}{|a|}$ and $-\frac{1}{|a|}$, there are 2k distinct complex roots. Thus there are k complex roots of (16) on the upper half plane (that is for $0 < \theta < \pi$). Now if $\frac{1}{|a|}e^{i\theta}$ satisfies (16) then we can show that $\frac{1}{|a|}e^{i(\pi-\theta)}$ also satisfies (16). Note that $\frac{\pi}{2}$ is a solution of (16) when k is odd. Therefore, the number of solutions of (3) which lie on $|\mu| = \frac{1}{|a|}$ in the first quadrant $(0 < \theta < \frac{\pi}{2})$ is $\frac{k-1}{2}$ if k is odd and $\frac{k}{2}$ if k is even. This completes the proof of Lemma 2.5.

From Remark 2.2, Lemma 2.4, and Lemma 2.5, we have the following result.

Proposition 2.6. Assume that $c \neq 0$ and $|a| < \frac{1}{\alpha}$. Let k be an integer greater than 3. Then the arguments of the complex roots of (3) which lie on $|\mu| = \frac{1}{|a|}$ are the only solutions of (12) except when k is even where the arguments $\frac{\pi}{2}$ and $\frac{3\pi}{2}$ are not solutions of (12).

Remark 2.3. In [2] the author proved a result similar to Proposition 2.6 by showing that the number of solutions of $S(\theta) = \frac{\sin k\theta}{\sin(k+1)\theta} = \frac{1}{|a|}$ with $0 < \theta < \pi$ and $|a| < \frac{k+1}{k}$ is equal to the number of complex roots of (3) which lie on the upper half plane for a fixed value of c which is not correct (although the conclusion of his result is correct). In fact we must show that the number of solutions of $S(\theta) = \frac{\sin k\theta}{\sin(k+1)\theta} = \frac{1}{|a|}$ with $0 < \theta < \pi$ and $|a| < \frac{k+1}{k}$ is equal to the number of complex roots of (3) which lie on $|\mu| = \frac{1}{|a|}$ for different values of c (which can be shown as in Lemma 2.5 above).

Remark 2.4. Let k be an integer greater than 3. The minimum value of |c| given in (18) for which (3) has a complex root on $|\mu| = \frac{1}{|a|}$ with $|a| < \frac{1}{\alpha}$ occurs when θ is the solution of (12) and $\theta \in \left(0, \frac{\pi}{k+1}\right)$.

Remark 2.5. For k = 2 or k = 3, it is easy to show that (3) has exactly one complex root $\mu = \frac{1}{|a|}e^{i\theta_0}$, where $\theta_0 \in (0, \frac{\pi}{2})$ and that θ_0 is the only solution of (12) in $(0, \frac{\pi}{2})$. Thus, Proposition 1.6 holds true for k = 2 and k = 3 also.

The next four lemmas provide us with the necessary and sufficient conditions for the roots of (3) when $c \neq 0$ to be inside the disk $|\mu| < \frac{1}{|a|}$.

Lemma 2.7. Let k be an odd integer greater than 1 and c > 0. Then all the roots of (3) lie inside the disk $|\mu| < \frac{1}{|a|}$ if and only if $|a| < \frac{1}{\alpha}$ and

(22)
$$\frac{a^2 - 1}{|a|^{k+1}} < c < \frac{1}{|a|^{k+1}} \left\{ a^4 - 2a^2 \cos 2\phi + 1 \right\}^{\frac{1}{2}},$$

where ϕ is the solution of $\frac{\sin(k-1)\theta}{\sin(k+1)\theta} = \frac{1}{a^2}$ in $\left(0, \frac{\pi}{k+1}\right)$.

Proof. Lemma 2.1 implies that if $\frac{1}{|a|} \leq \alpha$ and $0 < c \leq \beta$, then (3) has real roots which lie outside the disk $|\mu| < \frac{1}{|a|}$. Hence, for all roots of (3) to be inside the disk

 $|\mu| < \frac{1}{|a|}$ it is necessary that $|a| < \frac{1}{\alpha}$. We now consider the following two cases. Case 1. $1 < |a| \le \frac{1}{\alpha}$.

As c increases from 0 to β the largest positive root and the smallest negative root of (3) move from 1 and -1 toward α and $-\alpha$ respectively, while all other roots move outward away from 0. Let c_1 and c_2 be the values of c for which the largest positive and the smallest negative roots, and a complex root reach the circle $|\mu| = \frac{1}{|\alpha|}$. Then

$$c_1 = \frac{a^2 - 1}{|a|^{k+1}}$$
 and $c_2 = \frac{1}{|a|^{k+1}} \left\{ a^4 - 2a^2 \cos 2\phi + 1 \right\}^{\frac{1}{2}}$.

Note that $c_1 < c_2$. From Remark 2.4, the smallest value of c_2 for which a complex root of (3) lies on the circle $|\mu| = \frac{1}{|a|}$ is obtained when ϕ is the solution of $\frac{\sin(k-1)\theta}{\sin(k+1)\theta} = \frac{1}{a^2}$ in $\left(0, \frac{\pi}{k+1}\right)$. Thus, as c increases, first the largest positive and the smallest negative root reach the circle $|\mu| = \frac{1}{|a|}$ (simultaneously) and then a complex root reaches the circle $|\mu| = \frac{1}{|a|}$. Therefore, all the roots of (3) lie inside the disk $|\mu| < \frac{1}{|a|}$ if and only if $c_1 < c < c_2$ and (22) holds. **Case 2.** $|a| \leq 1$.

By Lemma 2.1, (3) has only complex roots which reach the circle $|\mu| = \frac{1}{|a|}$. Let c_2 be the values of c for which a complex root reaches the circle $|\mu| = \frac{1}{|a|}$. As in Case 1, $c_2 = \frac{1}{|a|^{k+1}} \left\{ a^4 - 2a^2 \cos 2\phi + 1 \right\}^{\frac{1}{2}}$ and all the roots of (3) lie inside the disk $|\mu| < \frac{1}{|a|}$ if and only if $0 < c < c_2$ and (22) holds.

The next three lemmas can be proved similarly to Lemma 2.7 and will be omitted.

Lemma 2.8. Let k be an odd integer greater than 1 and c < 0. Then all the roots of (3) lie inside the disk $|\mu| < \frac{1}{|a|}$ if and only if |a| < 1 and $c > \frac{a^2 - 1}{|a|^{k+1}}$.

Lemma 2.9. Let k be an even integer greater than 1 and c > 0. Then all the roots of (3) lie inside the disk $|\mu| < \frac{1}{|a|}$ if and only if |a| < 1 and $c < \frac{1-a^2}{|a|^{k+1}}$.

Lemma 2.10. Let k be an even integer greater than 1 and c < 0. Then all the roots of (3) lie inside the disk $|\mu| < \frac{1}{|a|}$ if and only if |a| < 1 and $c > \frac{a^2 - 1}{|a|^{k+1}}$.

We now give the necessary and sufficient conditions for the roots of (2) to be inside the unit disk.

Lemma 2.11. Let k be an odd integer greater than 1, a nonzero real number, and b arbitrary real number. The roots of (2) are inside the unit disk if and only if $|a| < \frac{1}{\alpha}$ and $a^2 - 1 < b < \left\{a^4 - 2a^2\cos 2\phi + 1\right\}^{\frac{1}{2}}$, where ϕ is the solution of $\frac{\sin(k-1)\theta}{\sin(k+1)\theta} = \frac{1}{a^2}$ in $\left(0, \frac{\pi}{k+1}\right)$.

Proof. Case 1. b > 0.

Then, c > 0 and Lemma 2.7 implies that all roots of (2) are inside the unit disk if and only if $|a| < \frac{1}{\alpha}$ and $a^2 - 1 < b < \left\{a^4 - 2a^2\cos 2\phi + 1\right\}^{\frac{1}{2}}$. Case 2. b < 0.

Then, c < 0 and Lemma 2.8 implies that all roots of (2) are inside the unit disk if and only if |a| < 1 and $a^2 - 1 < b$. The Lemma follows from Case 1 and Case2. \Box

Lemma 2.12. Let k be an even integer greater than 1, a nonzero real number and b arbitrary real number. The roots of (2) are inside the unit disk if and only if |a| < 1 and $a^2 + |b| < 1$.

Proof. Similar to Lemma 2.11 and will be omitted.

From Lemma 2.11 and Lemma 2.12, we obtain the following necessary and sufficient conditions for (1) to be asymptotically stable.

Theorem 2.13. Let a be a nonzero real number, b an arbitrary real number, and k an integer greater than 1. Then for k odd, (1) is asymptotically stable if and only if $|a| < \frac{1}{\alpha}$ and $a^2 - 1 < b < \left\{a^4 - 2a^2\cos 2\phi + 1\right\}^{\frac{1}{2}}$, where ϕ is the solution of $\frac{\sin(k-1)\theta}{\sin(k+1)\theta} = \frac{1}{a^2}$ in $\left(0, \frac{\pi}{k+1}\right)$. For k even, (1) is asymptotically stable if and only if |a| < 1 and $a^2 + |b| < 1$.

Remark 2.6. When a = 0 or k = 1 it is easy to show that the necessary and sufficient conditions for (1) to be asymptotically stable is that $|a^2 - 1| < 1$.

Acknowledgment. This work is supported by the Thailand Research Fund and the Faculty of Science, Chiangmai University.

References

- C. W. Clark, A delay-recruitment model of population dynamics, with an application to baleen whale populations, J.Math. Biol., 3 (1976), 381-391.
- [2] S. A. Kuruklis, The asymptotic stability of $x_{n+1} ax_n + bx_{n-k} = 0$, J. Math. Anal. Appl., 188 (1994), 719-731.
- [3] S. A. Levin and R. M. May, A note on difference-delay equations, Theoret. Popul. Biol., 9 (1976), 178-187.