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Abstract. We determine maximal space-like hypersurfaces which are the images of sub-

bundles of the normal bundle of m-dimensional totally geodesic space-like submanifolds

of an (m + 2)-dimensional Lorentzian space form M̃m+2
1 (c) under the normal exponential

map. Then we construct examples of maximal space-like hypersurfaces of M̃m+2
1 (c).

1. Introduction

A maximal hypersurface in a Lorentz-Minkowski n-space Ln is a space-like
hypersurface with zero mean curvature. It is well known that the maximal and con-
stant mean curvature space-like hypersurfaces are important in both mathematics
and physics points of view. They play some important roles in general relativity
(see for instance [12] and references therein).

One of the most important global results about maximal surfaces in L3 is Calabi-
Bernstein’s theorem, which states that the only complete maximal surfaces in the
Lorentz-Minkowski space L3 are the space-like planes. This theorem was first proved
by Calabi in [4], and later it was extended to n-dimensional case by Cheng and Yau
in [5]. As a generalization of this result, complete space-like hypersurfaces with
constant mean curvature in a Lorentz manifold have been investigated in [1], [15],
[14], [10], [18], [3].

Recently, maximal space-like surfaces in the Lorentz-Minkowski 3-space L3 has
been studied in [9], [11], [2], [13]. For instance, in [11], maximal surfaces in L3

which are foliated by pieces of circles were classified; in [9], maximal rotation and
ruled surfaces in L3 were investigated, and also, maximal helicoidal surfaces in L3

were studied in [13].
In [8], Kimura determined minimal hypersurfaces M foliated by geodesics of

a 4-dimensional space forms M̃4 that given by M = {expp(tξ)|p ∈ Σ, t ∈ R},
where Σ is a minimal surface of a 4-dimensional space form M̃4 and ξ is a local
unit normal vector field on Σ. As a partial generalization of Kimura’s work, in
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[7] we constructed the minimal hypersurfaces which are the image of a subbundle,
spanned by a nonparallel unit normal vector field ξ, of the normal bundle of an m-
dimensional totally geodesic submanifold of an (m+2)-dimensional space form under
the normal exponential map. These hypersurfaces are foliated by the geodesics of
the space forms.

Then, it is natural to construct the similar hypesurfaces of an (m + 2)-
dimensional Lorentzian space form M̃m+2

1 (c). However, in a Lorentzian space vec-
tors with different causal characters usually turn into a wider variety of cases to
consider. In this work, for a space-like non-parallel unit normal vector field ξ, we
build up space-like hypersurfaces of a Lorentzian space form M̃m+2

1 (c) under a con-
strain condition. More precisely, we start with a totally geodesic immersion f from
an m-dimensional connected Riemannian manifold Mm into an (m+2)-dimensional
Lorentzian space form M̃m+2

1 (c) and a non-parallel space-like unit normal vector
field ξ to define a map F : M × I → M̃m+2

1 (c) by F (x, t) = exp(x, tξ), where
x ∈ M, t ∈ I which is an open subset of R. The image F (M × I) is a space-like
hypersurface of M̃m+2

1 (c) foliated by the geodesics of M̃m+2
1 (c) under a constraint

condition, which does not appear in the Riemannian space form [7]. We show that
F is a maximal immersion under some conditions on the components of the normal
connection form of f . We also construct some examples.

2. Preliminaries

Let M̃m
q be an m-dimensional pseudo-Riemannian manifold with pseudo-

Riemannian metric tensor g̃ of index q. Denoting by 〈 , 〉 the associated nonde-
generate inner product on M̃m

q , a tangent vector X to M̃m
q is said to be space-like

if 〈X, X〉 > 0 ( or X = 0), time-like if 〈X, X〉 < 0 or light-like (null) if 〈X, X〉 = 0
and X 6= 0.

Let Mm be a submanifold of a pseudo-Riemannian manifold M̃m+n
q . If the

pseudo-Riemannian metric tensor g̃ of M̃m+n
q induces a pseudo-Riemannian metric

g on Mm, then Mm is called a pseudo-Riemannian submanifold of M̃m
q . If the

index of g is zero then M is called a space-like submanifold.
Let X and Y be tangent vector fields on Mm and let ξ be a normal vector

field on Mm in M̃m+n
q . Then the Gauss formula and the Weingarten formula are,

respectively, given by

∇̃XY = ∇XY + h(X, Y ) and ∇̃Xξ = −Aξ(X) +∇⊥
Xξ,

where ∇̃ is the Riemannian connection of M̃ , ∇ and ∇⊥ are, respectively, the
induced Riemannian connection of M and the normal connection of Mm in M̃ , h
is the second fundamental form of M in M̃m+n

q and Aξ is the shape operator of M
with respect to the normal vector ξ. Also the Gauss and Weingarten formulas yield

(2.1) 〈Aξ(X), Y 〉 = 〈h(X, Y ), ξ〉.
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Let Mm be a submanifold of a pseudo-Riemannian manifold M̃m+n
q . Let ξ1, · · · ,

ξn be an orthonormal local basis for T⊥M . Then the mean curvature vector is given
by

H =
1
m

n∑
i=1

εi(traceAξi)ξi,

where εi = 〈ξi, ξi〉 = ±1. For a space-like submanifold M of M̃m+n
q , if H = 0 on

M , then M is called a maximal submanifold of M̃m+n
q .

Let M̃m
q (c) be an m-dimensional connected pseudo-Riemannian manifold of

index q and of constant curvature c, which is called an indefinite space form. Ac-
cording to c > 0, c = 0 or c < 0, it is a pseudo-Riemannian sphere Sm

q (c), a
pseudo-Euclidean space Rm

q or a pseudo-hyperbolic space Hm
q (c), respectively. For

the index q = 1, Sm
1 (c), Rm

1 and Hm
1 (c) are, respectively, called the de Sitter space-

time, Minkowski space-time and the anti-de Sitter space-time. Hence the indefinite
space form M̃m

1 (c) is called a Lorentzian space form. If q = 0, then M̃m
q (c) is a

Riemannian space form. For simplicity, we suppose that the constant curvature c
of M̃m

1 (c) is equal to 1, 0, −1 according to whether c > 0, c = 0, c < 0.
Let Rm

q be an m-dimensional pseudo-Euclidean space with metric tensor given
by

g̃ = −
q∑

i=1

(dxi)2 +
m∑

i=q+1

(dxi)2,

where (x1, · · · , xm) is a rectangular coordinate system of Rm
q . So (Rm

q , g̃) is a flat
pseudo-Riemannian manifold of index q. For the pseudo-Riemannian sphere and
pseudo-hyperbolic space, we put

Sm
q (1) = {x ∈ Rm+1

q | 〈x, x〉 = 1} and Hm
q (−1) = {x ∈ Rm+1

q+1 | 〈x, x〉 = −1}.

Also the hyperbolic space Hm(−1) is defined by

Hm(−1) = {x ∈ Rm+1
1 | 〈x, x〉 = −1 and x1 > 0},

where x1 is the first coordinate in Rm+1
1 .

Let f : Mm → M̃m+2
1 (c) be a smooth isometric immersion from an m-

dimensional connected Riemannian manifold Mm into an (m + 2)-dimensional
Lorentzian space form M̃m+2

1 (c). Let ξ, η be a local orthonormal normal basis
of Mm in M̃m+2

1 (c) with signature ε1 = 〈ξ, ξ〉 and ε2 = 〈η, η〉. Let X1, · · · , Xm be
a local tangent basis on M and s be the normal connection form for ∇⊥ defined
by s(Xi) = 〈∇⊥

Xi
ξ, η〉. Since 〈ξ, η〉 = 0, then we see that ∇⊥

Xi
ξ = ε2s(Xi)η and

∇⊥
Xi

η = −ε1s(Xi)ξ. Here it is seen that if either ξ or η is parallel in the normal
space then the normal connection form for ∇⊥ is zero. We therefore suppose that
ξ and η are nonparallel.
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Denoting by si the components of the connection form s, the covariant deriva-
tive of the 1-form s is defined by

sij = (∇Xj
s)(Xi) = Xj(si)− s(∇Xj

Xi).

Then it is easily seen that

sij = 〈∇⊥
Xj
∇⊥

Xi
ξ −∇⊥

∇Xj
Xi

ξ, η〉.

As the ambient space is a space form, the Ricci equation can be written as

〈R⊥(X, Y )ξ, η〉 = 〈[Aξ, Aη]X, Y 〉, ([16, p.125]),

where R⊥ denotes the normal curvature tensor of the normal connection ∇⊥ and
[Aξ, Aη] = AξAη −AηAξ. So we express the Ricci equation as

(2.2) sji − sij = 〈R⊥(Xi, Xj)ξ, η〉 = 〈[Aξ, Aη]Xi, Xj〉.

If the normal curvature tensor R⊥ of the normal connection ∇⊥ vanishes identically,
then the normal connection is said to be flat.

Henceforth, for the sake of simplicity of the computations we take a local isother-
mal coordinate system (x1, · · · , xm) of M such that ∂i = ∂

∂xi
= ϕXi, i = 1, · · · ,m,

where X1, · · · , Xm form an orthonormal tangent basis on M and ϕ is a positive
function on some open set in M . Thus the components of the first fundamental
form g on M are 〈fi, fj〉 = ϕ2δij , i, j = 1, · · · ,m. In terms of the chosen tangent
basis it is easily seen that

(2.3) ∇Xj Xi =
m∑

k=1

γk
ijXk, γk

ij = − 1
ϕ

(Xj(ϕ)δk
i − Γk

ij),

where Γk
ij are the Christoffel symbols of M . Hence s(∇Xj Xi) =

∑m
k=1 γk

ijsk, and
we have

(2.4) Xj(si) = sij +
m∑

k=1

γk
ijsk.

Let ξ be a unit space-like normal vector field on Mm in M̃m+2
1 (c). Then η

is time-like, ε1 = 1 and ε2 = −1. The normal exponential mapping of Mm in
M̃m+2

1 (c) in direction ξ is given by

exp(x, tξ) = a(t)f(x) + b(t)ξ(x),

where x ∈ M and t ∈ R. The functions a(t) and b(t) are given by a(t) = 1, b(t) = t
if c = 0; a(t) = cos t, b(t) = sin t if c = 1; and a(t) = cosh t, b(t) = sinh t if c = −1.
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3. Maximal hypersurfaces of M̃m+2
1 (c)

Let f : Mm → M̃m+2
1 (c) be a smooth totally geodesic isometric immersion from

an m-dimensional connected Riemannian manifold Mm into an (m+2)-dimensional
Lorentzian space form M̃m+2

1 (c). Let I be an open interval containing zero such
that I ⊂ (−π/2, π/2) when c = 1. We then define a map F : M × I → M̃m+2

1 (c) by

(3.1) F (x, t) = exp(x, tξ).

The hypersurface F (M × I) is the part of the image of the subbundle, spanned by
the space-like nonparallel unit normal vector field ξ, of the normal bundle T⊥M
under the normal exponential mapping of M in M̃m+2

1 (c).
The tangent vectors to the hypersurface at (x1, · · · , xm, t) are expressed as

Fi =
∂F

∂xi
= afi + bξi, i = 1, · · · ,m, and Ft =

∂F

∂t
= a′f + b′ξ,

where Fi, Ft, fi, ξi, ... denote the derivatives of F, f , and ξ with respect to xi

and t; a′ and b′ are, respectively, the derivatives of a(t) and b(t). As f is totally
geodesic we have Aξ ≡ 0 and Aη ≡ 0. So,

Fi = ϕ(aXi + bDXiξ) = ϕ(aXi + b∇⊥
Xi

ξ) = ϕ(aXi − bsiη), i = 1, · · · ,m,

where D is the covariant differentiation in Rm+2
1 or Rm+3

d , d = 1, 2. Hence

(3.2) 〈Fi, Fj〉 = ϕ2(a2δij − b2sisj), 〈Fi, Ft〉 = 0, 〈Ft, Ft〉 = 1,

where i, j = 1, · · · ,m. The tangent vector Ft is space-like, and the tangent vectors
Fi, i = 1, · · · ,m, are space-like if 〈Fi, Fi〉 = ϕ2(a2 − b2s2

i ) > 0, i = 1, · · · ,m, that
is, the map F is space-like. Therefore we have the metric G on M × I induced by
F as

G =
(

ϕ2(a2δij − b2sisj) 0
0 1

)
.

Note that when the normal vector ξ is time-like, then the tangent vectors Fi’s
are space-like without any restriction and the tangent vector Ft is time-like, and
hence F is Lorentzian, which was studied in [6].

We need the following Lemma to show that the map F is an immersion.

Lemma 3.1. Let E = I +µvT v be an m×m matrix, where I is the m×m identity
matrix and v = (v1, · · · , vm) ∈ Rm. Then E has two distinct eigenvalues 1 and
1+µ‖v‖2 with multiplicities m−1 and 1, respectively, and further det E = 1+µ‖v‖2
and the matrix I − µ 1

det E vT v is the inverse of E, where µ = ±1 and det E 6= 0
when µ = −1.

For µ = 1, the Lemma was proved in [7] and the Lemma can be proved similarly
for µ = −1.



114 Uǧur Dursun

Proposition 3.2. Let f : Mm → M̃m+2
1 (c) be a smooth totally geodesic isometric

immersion from an m-dimensional connected Riemannian manifold Mm into an
(m + 2)−dimensional Lorentzian space form M̃m+2

1 (c). If α2 = a2 − b2(s2
1 + · · · +

s2
m) > 0 on some connected open subset U ⊂ M×I, then the map F : U ⊂ M×I →

M̃m+2
1 (c) defined by (3.1) is a space-like immersion.

Proof. As f is totally geodesic, using the Lemma 3.1, the determinant of G is
calculated as

detG =det(ϕ2(a2δij − b2sisj)) = (a2ϕ2)m det(δij −
b2

a2
sisj)

=(a2ϕ2)m{1− b2

a2
(s2

1 + · · ·+ s2
m)} = a2(m−1)ϕ2m(a2 − b2ŝ2),

where ŝ2 = s2
1+· · ·+s2

m. Since ϕ is a positive function, α2 = a2−b2(s2
1+· · ·+s2

m) > 0
on the open subset U and the functions a(t) and b(t) have no zeros simultaneously,
then det G = 0 if and only if a(t) = 0. Therefore F is an immersion if and only if
a(t) 6= 0. In fact, for c = 0 and c = −1, respectively, a(t) = 1 and a(t) = cosh t,
which have no zeros for all t ∈ R, and for c = 1, a(t) = cos t 6= 0 on I ⊂ (−π/2, π/2).

From the condition a2−b2(s2
1+· · ·+s2

m) > 0, we have a2−b2s2
i > 0, i = 1, · · · ,m.

Thus the coordinate vectors Fi, i = 1, · · · ,m, are all space-like. As Ft is also space-
like, then F is a space-like immersion. �

If F is an immersion, then from the Lemma 3.1, the inverse of G is obtained as

G−1 =
( 1

α2ϕ2a2 (α2δij + b2sisj) 0
0 1

)
.

By considering (2.3) and (2.4), the second derivatives of F are calculated as

Fij =
∂2F

∂xi∂xj
(3.3)

=
∂ϕ

∂xj
(aXi − bsiη) + ϕ2(aDXj Xi − bXj(si)η − bsi∇⊥

Xj
η)

= Xj(ϕ)Fi + ϕ2{
m∑

k=1

γk
ij(aXk − bskη)− acδijf + b(sisjξ − sijη)}

=
m∑

k=1

(Xj(ϕ)δik + ϕγk
ij)Fk + bϕ2(sisjξ − sijη)− acϕ2δijf

=
m∑

k=1

Γk
ijFk + bϕ2(sisjξ − sijη)− acϕ2δijf, i, j = 1, · · · ,m,

Fit = ϕ(a′Xi − b′siη), i = 1, · · · ,m, and Ftt = (a′′f + b′′ξ) = −cF.
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Let h̄N denotes the second fundamental form of F relative to the unit normal
vector N to F in M̃m+2

1 (c). So, for the coordinate vector fields ∂1, . . . , ∂m, ∂t, if we
use the Gauss formula for F , then we have

h̄N (∂i, ∂j) = 〈Fij , N〉, h̄N (∂i, ∂t) = 〈Fit, N〉, h̄N (∂t, ∂t) = 〈Ftt, N〉.

�
We prove the following theorem.

Theorem 3.3. Let f : Mm → M̃m+2
1 (c) be a smooth totally geodesic isometric

immersion from an m-dimensional connected Riemannian manifold Mm into an
(m+2)-dimensional Lorentzian space form M̃m+2

1 (c). If α2 = a2−b2(s2
1+· · ·+s2

m) >
0 on some connected open subset U ⊂ M×I, then the immersion F : U ⊂ M×I →
M̃m+2

1 (c) defined by (3.1) is maximal if and only if the components, si, of the
normal connection form s of f satisfy the following equations

(3.4)
m∑

i=1

sii = 0 and
m∑

i,j=1

sisjsji = 0.

Proof. Let AN denote the shape operator of F in M̃m+2
1 (c). By virtue of (2.1), it

is given by AN = G−1h̄. Hence we can write the mean curvature vector H of F in
M̃m+2

1 (c) as

H =
1

(m + 1)α2a2ϕ2

m∑
i,j=1

(α2δij + b2sisj)〈Fji, N〉N

=
1

(m + 1)α2a2ϕ2

m∑
i,j=1

(α2δij + b2sisj)(Fji)⊥,

where (Fji)⊥ denotes the projection of Fji on the normal space of F in M̃m+2
1 (c).

If c 6= 0, then F is maximal if and only if

(3.5) f ∧ ξ ∧ F1 ∧ · · · ∧ Fm ∧
m∑

i,j=1

(α2δij + b2sisj)Fji = 0,

as F ∧ Ft = f ∧ ξ. If c = 0, then Ft = ξ and thus F is maximal if and only if

(3.6) ξ ∧ F1 ∧ · · · ∧ Fm ∧
m∑

i,j=1

(α2δij + b2sisj)Fji = 0.

Note that (3.5) and (3.6) do not depend on the chosen local coordinate system. For
c 6= 0, using (3.3) we obtain

f ∧ ξ ∧ F1 ∧ · · · ∧ Fm ∧
m∑

i,j=1

(α2δij + b2sisj)ϕ2b2sjiη = 0
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⇐⇒
m∑

i,j=1

(α2δij + b2sisj)sji = 0 ⇐⇒
m∑

i=1

sii = 0 and
m∑

i,j=1

sisjsji = 0.

Since M is totally geodesic, then we have sij = sji from the Ricci equation (2.2).
Similarly, the conditions (3.4) are valid for c = 0. �

Note that the hypersurface F (U), which is the part of the image of the subbun-
dle, spanned by the unit space-like nonparallel normal vector field ξ, of the normal
bundle T⊥M under the normal exponential mapping of M in M̃m+2

1 (c) is equiva-
lent the following two conditions: (1) F (U) is foliated by the geodesic of M̃m+2

1 (c),
(2) m-dimensional distribution on F (U) orthogonal to the geodesics in (1) is locally
integrable.

4. Construction of examples

Here we construct some examples of the maximal immersion, defined as in the
previous section, into space forms M̃m+2

1 (c). We consider a totally geodesic isomet-
ric immersion f : Mm(c) → M̃m+2

1 (c) from an m-dimensional Riemannian space
form Mm(c) into an (m + 2)-dimensional Lorentzian space form M̃m+2

1 (c) defined
by

f(x1, · · · , xm) =
{

(0, x1, · · · , xm, 0) if c = 0,
1
r2 (0, c(r2 − 2), 2x1, · · · , 2xm, 0) if c = ∓1,

where x1, · · · , xm ∈ R, r2 = 1+c(x2
1 + · · ·+x2

m) and for c = −1, x2
1 + · · ·+x2

m < 1.
We will do all computations for c = ∓1. By a direct computations, the

components of the induced first fundamental form on Mm(c) are obtained as
〈fi, fj〉 = 4

r4 δij , i, j = 1, · · · ,m, which means that the chosen coordinate system on
M is isothermal and ϕ = 2

r2 . Thus, Xi = r2

2
∂

∂xi
, i = 1, · · · ,m, form a local or-

thonormal tangent basis on Mm(c). In terms of this metric the Christoffel symbols
are obtained as

(4.1) Γk
ij = −2c

r2
(xiδkj + xjδik − xkδij).

For the normal space of Mm(c) in M̃m+2
1 (c), an orthonormal local basis can, gen-

erally, be chosen as

ξ = (sinh θ, 0, · · · , 0, cosh θ), η = (cosh θ, 0, · · · , 0, sinh θ),

where θ = θ(x1, · · · , xm) is a smooth function on some open subset of M . We
will find θ, which determines the unit nonparallel normal vector ξ on Mm(c) such
that the immersion F defined in previous section is maximal on some open subset
U ⊂ M×I under the condition α2 = a2−b2(s2

1+· · ·+s2
m) > 0. Now we will calculate

the components si of the normal connection s and their covariant derivatives sij .
From the definition of si, we have

(4.2) si = 〈∇⊥
Xi

ξ, η〉 = 〈DXiξ, η〉 =
r2

2
〈 ∂ξ

∂xi
, η〉 =

r2

2
∂θ

∂xi
,
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that is, si = − r2

2 θi, i = 1, · · · ,m, and hence

Xj(si) =
r2

2
∂

∂xj
(
r2

2
θi) = −r2

2
(cxjθi +

r2

2
θij).

Using the equations (2.3) and (4.1), we have γk
ij = −c(xiδkj −xkδij). Therefore, by

considering (2.4), we obtain

(4.3) sij = −r2

2
[cxjθi +

r2

2
θij + c

m∑
k=1

(xiδkj − xkδij)θk] =
r4

4
(−θij +

m∑
k=1

Γk
ijθk).

Here it is clear that sij = sji if and only if θij = θji. Thus, by using (4.2) and (4.3),
the first equation of (3.4) turns out to be

(4.4) 2c(2−m)θ̃ + r2
m∑

i=1

θii = 0,

and the second equation of (3.4) becomes

(4.5) 2cθ̃θ̂2 + r2
m∑

i,j=1

θiθjθji = 0,

where θ̃ =
∑m

i=1 xiθi and θ̂2 =
∑m

i=1 θ2
i .

For c = 0, by a straightforward computation we can see that the equations (4.4)
and (4.5) are valid.

The solutions of the partial differential equations (4.4) and (4.5), which were
studied for m = 2 in [8] give us the function θ, that is, the normal vector fields on
Mm(c) which are not parallel in the normal space of f in M̃m+2

1 (c) unless θ is a
constant function on Mm(c). For m > 2, the following some special solutions of
the equations (4.4) and (4.5) were studied in [7]. In the domains of these solutions,
the map F may not be a space-like immersion. For some solutions, we will obtain
some connected open subset of the domain of f to find an interval for t with the
restriction α2 = a2 − b2ŝ2 > 0 such that F is a smooth maximal immersion.

Example 4.1. For c = 0, we have a linear solution of the equations (4.4) and (4.5),
which is

(4.6) θ(x1, · · · , xm) = C1x1 + · · ·+ Cmxm,

and hence
F (x1, · · · , xm, t) =

(
t sinh θ, x1, · · · , xm, t cosh θ

)
,

is a smooth maximal immersion for (x1, · · · , xm) ∈ Rm and |t| < 2√
C2

1+···+C2
m

,

which comes from the condition α2 = a2 − b2ŝ2 > 0 .
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Let ` be a positive integer such that ` ≤ m/2, m ≥ 2. For c = −1, 0, 1, the
function

(4.7) θ(x1, · · · , xm) =
∑̀
i=1

Ci arctan
x2i

x2i−1
,

is a solution of the equations (4.4) and (4.5) in the open domain D0 =
{(x1, · · · , xm) ∈ Rm : x2i−1 6= 0, i = 1, · · · , `}, where C1, · · ·C` ∈ R. However, the
map F may not be a space-like immersion on D0. For the following examples, we
will consider some connected open subset of D0 to find an interval for the parameter
t such that F is a smooth maximal immersion. Moreover, we will show that F is a
ruled immersion. Let c1 6= 0. Then x1 = θ− C̄2x2 − · · · − C̄mxm, C̄i = Ci/C1, i =
2, · · · ,m, and

F (θ, x2 · · · , xm, t) =
(
t sinh θ, θ − C̄2x2 − · · · − C̄mxm, x2, · · · , xm, t cosh θ

)
.

This expression means that F is a ruled maximal immersion in Rm+2
1 because

x2 · · · , xm, t are linear parameters, which span totally geodesic m-planes Rm.

Example 4.2. For c = 0, a linear combinations of the solutions (4.6) and (4.7)
gives

(4.8) θ(x1, · · · , x2`, x2`+1, · · · , xm) =
∑̀
i=1

Ci arctan
x2i

x2i−1
+

m∑
j=2`+1

Cixi,

which is also a solution of (4.4) and (4.5) in the open domain D0, (see [7]). Now
let us consider the open set W (ρ0) = {(x1, · · · , xm) ∈ Rm : x2

1 + · · · + x2
2` > ρ2

0}
for some constant ρ0. Using (4.2), when we calculate ŝ2 for the function (4.8) we
obtain

ŝ2 =
1
4

(
θ2
1 + · · ·+ θ2

m

)
=

1
4

(
C2

1

x2
1 + x2

2

+ · · ·+ C2
`

x2
2`−1 + x2

2`

+ C2
2`+1 + · · ·+ C2

m

)
.

On the set W (ρ0), x2
2i−1 + x2

2i > ρ2
0 for i = 1, 2, · · · , `. Hence

ŝ2 <
1
4

(
C2

1 + · · ·+ C2
`

ρ2
0

+ C2
2`+1 + · · ·+ C2

m

)
.

Therefore we have

α2 = 1− t2ŝ2 > 1− t2

4

(
C2

1 + · · ·+ C2
`

ρ2
0

+ C2
2`+1 + · · ·+ C2

m

)
> 0,

as a(t) = 1 and b(t) = t. This implies that

|t| < 2ρ0√
C2

1 + · · ·+ C2
` + ρ2

0(C
2
2`+1 + · · ·+ C2

m)
= t0.
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As a result, the map F given by

F (x1, · · · , xm, t) =
(

t sinh(
∑̀
i=1

Ci arctan
x2i

x2i−1
+

m∑
i=2`+1

Cixi), x1, · · · , xm,

t cosh(
∑̀
i=1

Ci arctan
x2i

x2i−1
+

m∑
i=2`+1

Cixi)
)

,

is a smooth maximal immersion on each connected component of the open set
U = (D0 ∩W (ρ0))× (−t0, t0).

For m = 2 (` = 1), if we put u =
√

x2
1 + x2

2, then we can write the map F as

F (θ, u, t) = (t sinh θ, u cos
θ

C1
, u sin

θ

C1
, t cosh θ),

which shows that F is a 2-ruled maximal immersion in R4
1 as u and t are linear

parameters that span totally geodesic planes R2.

Example 4.3. For c = 1, we consider the solution (4.7) of the equations (4.4) and
(4.5). Let W (ρ0µ0) = {(x1, · · · , xm) ∈ Rm : ρ2

0 < x2
1 + · · · + x2

m < µ2
0} for some

constants ρ0 < 1 and µ0 > 1. Since r2 = 1 + x2
1 + · · · + x2

m, when we calculate ŝ2

we get

ŝ2 =
r2

4
(
θ2
1 + · · ·+ θ2

m

)
=

(1 + x2
1 + · · ·+ x2

m)2

4

∑̀
i=1

C2
i

x2
2i−1 + x2

2i

.

On the set W (ρ0µ0) we can write x2
2i−1 + x2

2i > ρ2
0 for i = 1, · · · , `. Hence, on the

set D0 ∩W (ρ0µ0)

ŝ2 <
(1 + µ2

0)
2

4

∑̀
i=1

C2
i

x2
2i−1 + x2

2i

<
(1 + µ2

0)
2

4

∑̀
i=1

C2
i

ρ2
0

=
(1 + µ2

0)
2

4ρ2
0

∑̀
i=1

C2
i .

Therefore, using a(t) = cos t, b(t) = sin t, we have

α2 = cos2 t− sin2 t ŝ2 > cos2 t− sin2 t
(1 + µ2

0)
2

4ρ2
0

∑̀
i=1

C2
i > 0,

which gives us |t| < arctan

 2ρ0

(1 + µ2
0)

√∑`
i=1 C2

i

 = t̃0. Thus the map F

F (x1, · · · , xm, t) =
(

sin t sinh(
∑̀
i=1

Ci arctan
x2i

x2i−1
),

(r2 − 2) cos t

r2
,

2x1 cos t

r2
, · · · ,

2xm cos t

r2
, sin t cosh(

∑̀
i=1

Ci arctan
x2i

x2i−1
)
)

,
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is a smooth maximal immersion on each connected component of the open set
U = (D0 ∩W (ρ0µ0))× (−t̃0, t̃0), where r2 = 1 + x2

1 + · · ·+ x2
m.

Example 4.4. For c = −1, we reconsider the solution (4.7) of the equations (4.4)
and (4.5). Let W (ρ01) = {(x1, · · · , xm) ∈ Rm : ρ2

0 < x2
1 + · · · + x2

m < 1} for some
constants ρ0 < 1. Since r2 = 1− x2

1 − · · · − x2
m, when we calculate ŝ2 we get

ŝ2 =
r2

4
(
θ2
1 + · · ·+ θ2

m

)
=

(1− x2
1 − · · · − x2

m)2

4

∑̀
i=1

C2
i

x2
2i−1 + x2

2i

.

On the set W (ρ01) we can write x2
2i−1 + x2

2i > ρ2
0 for i = 1, · · · , `, and thus

ŝ2 <
(1− ρ2

0)
2

4

∑̀
i=1

C2
i

x2
2i−1 + x2

2i

<
(1− ρ2

0)
2

4

∑̀
i=1

C2
i

ρ2
0

=
(1− ρ2

0)
2

4ρ2
0

∑̀
i=1

C2
i .

Therefore, using a(t) = cosh t, b(t) = sinh t, we have

α2 = cosh2 t− sinh2 t ŝ2 > cosh2 t− sinh2 t
(1− ρ2

0)
2

4ρ2
0

∑̀
i=1

C2
i > 0,

which gives us |t| < tanh−1

 2ρ0

(1− ρ2
0)

√∑`
i=1 C2

i

 = t̂0, and the map F becomes

F (x1, · · · , xm, t) =
(

sinh t sinh(
∑̀
i=1

Ci arctan
x2i

x2i−1
),

(2− r2) cosh t

r2
,

2x1 cosh t

r2
, · · · ,

2xm cosh t

r2
, sinh t cosh(

∑̀
i=1

Ci arctan
x2i

x2i−1
)
)

,

which is a smooth maximal immersion on each connected component of the open
set U = (D0 ∩W (ρ01))× (−t̂0, t̂0), where r2 = 1− x2

1 − · · · − x2
m.

For c = −1, 0, 1 and m > 2, we have another solution of the differential equations
(4.4) and (4.5) from [7] as

(4.9) θ(x1, · · · , xn, xn+1, · · · , xm) = arctan
(

C1x1 + · · ·+ Cnxn

Cn+1xn+1 + · · ·+ Cmxm

)
,

when
∑n

i=1 C2
i =

∑m
i=n+1 C2

i in the open domain D = {(x1, · · · , xn, xn+1, · · · , xm) ∈
Rm :

∑m
i=n+1 Cixi 6= 0, and if c = −1, x2

1 + · · · + x2
m < 1}, where C1, · · ·Cm ∈ R.

As in the above examples, it can be shown that for some connected open subset of
D, there is an open interval for t for which F is a smooth maximal immersion.
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