
KYUNGPOOK Math. J. 48(2008), 81-92

On the Trajectory Null Scrolls in 3-Dimensional Minkowski
Space-Time E

3
1

Soley Ersoy and Murat Tosun

Department of Mathematics, Faculty of Arts and Sciences, Sakarya University,

54187 Sakarya, Turkey

e-mail : sersoy@sakarya.edu.tr and tosun@sakarya.edu.tr

Abstract. In this paper, the trajectory null scroll in 3-dimensional Minkowski space-time

E
3

1 is given by a firmly connected null oriented line moving with Cartan frame along null

curve. Some theorems and results between curvatures of base curve and distribution pa-

rameter of this surface are obtained. Moreover, some theorems and results related to being

developable and minimal of this surface are given. And also, some relationships among

geodesic curvature, geodesic torsion and the curvatures of null base curve of trajectory

null scroll are found.

1. Introduction

In literature there are many studies related to ruled surfaces and their invari-
ants (distribution parameters, Blaschke invariants, sectional curvature, apex angles,
etc) in 3-dimensional Euclidean space E3, [1], [2]. In a spatial motion, the trajec-
tories of oriented lines embedded in a moving space (or in a moving rigid body)
are generally trajectory ruled surfaces (or ruled surfaces). Therefore the geometry
of trajectory ruled surfaces is important in the study of space kinematics or spa-
tial mechanisms. And also, the developable of the trajectory ruled surfaces have
a number of applications in geometric modeling and model-based manufacturing
of mechanical products, [3], [4], [5]. Lorentz metric in 3-dimensional Minkowski
space-time E3

1
is indefinite. In theory of relativity, geometry of indefinite metric

is very crucial. Hence, the theory of ruled surfaces in Minkowski space-time which
has the metric ds2 = −dx2 + dy2 + dz2 attracted much attention. The situation is
much more complicated than the Euclidean case, since the ruled surfaces may have
a definite metric (space-like surfaces), Lorentz metric (time-like surfaces) or mixed
metric. Recently, the time-like or space-like ruled surfaces in have been studied sys-
tematically, [6], [7], [8], [9]. From the differential geometric point of view, the study
of null curves has its own geometric interest. Many of the classical results from Rie-
mannian geometry have Lorentz counterparts. In fact, space-like curves or time-like

Received September 1, 2006.
2000 Mathematics Subject Classification: 53B30.
Key words and phrases: Null scroll, distribution parameter, mean curvature, Gaussian

curvature.

81



82 Soley Ersoy and Murat Tosun

curves can be studied by a similar approach to that positive definite Riemannian
geometry. However, null curves have many properties very different from space-like
and time-like curves. In the other words, null curve theory has many results which
have no Riemannian analogues. For general theory of parametrized null curves we
refer to, [10]. In geometry of null curves difficulties arise because the arc length
vanishes, so that it is not possible to normalize the tangent vector in the usual way.
A method of proceeding is to introduce a new parameter called pseudo-arc which
normalizes the derivative of the tangent vector. Many authors generalize the results
of Bonnor since for a null curve in an n-dimensional Lorentzian space form they
introduce a Frenet frame with the minimum number of curvature functions (which
call the Cartan frame), and they study the null helices in those spaces, that is, null
curves with constant curvatures, [11], [12], [13]. In the first time, [14] introduced
the notion of B-scrolls as based on a null curve and a null line in the 3-dimensional
Minkowski space-time E3

1
. The null scrolls in 3-dimensional Minkowski space-time

E3

1
have been studied systematically, [15], [16].

2. Preliminaries

Let E3

1
denote the 3-dimensional Minkowski space-time, i.e. the Euclidean space

E3 with standard flat metric given by

g = −dx2

1
+ dx2

2
+ dx2

3

where (x1, x2, x3) is rectangular coordinate system of E3

1
since g is indefinite metric,

recall that a vector v in E3

1
can have one of three casual characters: it can be space-

like if g (v, v) > 0 or v = 0, time-like if g (v, v) < 0 and null g (v, v) = 0 and
v 6= 0. The norm of a vector v is given by ‖v‖ =

√

|g (v, v)|. Therefore, v is a unit
vector if g (v, v) = ∓1. Furthermore, vectors v and w are said to be orthogonal
if g (v, w) = 0, [17]. For any vectors v = (v1, v2, v3), w = (w1, w2, w3) ∈ E3

1
, the

Lorentzian product v ∧ w of v and w is defined as [18]

v ∧ w = (v3w2 − v2w3, v1w3 − v3w1, v1w2 − v2w1) .

An arbitrary curve α : I → E3

1
in the space E3

1
can locally be null iff the velocity

vector α′ (t) is null. Furthermore, α is a unit speed curve if g (α′ (s) , α′ (s)) = ∓1,
[19].

A surface in the 3-dimensional Minkowski space-time E3

1
is called a time-like

surface if induced metric on the surface is a Lorentzian metric i.e. the normal on the
surface is a space-like vector. Let M be a three dimensional Lorentzian manifold
and α be a null curve in M . A null frame of E3

1
is a positively oriented triple

(λ, N, W ) of vector satisfying

(1)
g (λ, λ) = g (N, N) = 0, g (λ, N) = 1

g (λ, W ) = g (N, W ) = 0, g (W, W ) = 1.

A null frame of a null curve α (s) is a frame field F (s) = (λ (s) , N (s) , W (s))

such that
dα

ds
is a positive scalar multiple of λ, [10]. In such a case, α is said
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to be framed by F (s). Frames of null curves are not unique. Moreover frames
are changed under parametrizations of a curve. Therefore, the curve and a frame
must be given together. Now suppose that α is framed by F = (λ, N, W ) with

λ =
dα

ds
. Then the vector fields N and W define line bundles ntr (α) and S

(

Tα⊥
)

over α, respectively. The line bundle S
(

Tα⊥
)

is called the screen vector bundle and

ntr (α) the null transversal vector bundle of with respect to S
(

Tα⊥
)

, respectively.
The Frenet formula of α with respect to the frame F is given by [10]

(2)

dλ

ds
= hλ + k1W

dN

ds
= −hN + k2W

dW

ds
= −k2λ − k1N.

The functions h, k1 and k2 are called the curvature functions of α. There always
exists a parameter s of α such that h = 0 in (1). This parameter is called a distin-
guished parameter of α, [10]. The distinguished parameter is uniquely determined
for prescribed screen vector bundle up to affine transformation. In case s is a
distinguished parameter of a null curve α, then we put

(3) ξ (s) =
dα

dt
(s) , n (s) = −N (s) , u (s) = W (s) .

Thus the Frenet formula of α with respect to F = (ξ, n, u) become

(4)
ξ′ = k1u
n′ = −k2u
u′ = −k2ξ + k1n.

Here the prime ′ denotes differentiation with respect to the distinguished parameter
s. The null frame F is called the Cartan frame of α (s). A parametrized null curve
parametrized by the distinguished parameter s together with its Cartan frame is
called a Cartan framed null curve, [10].
A ruled surface is a surface swept out by a straight line Y moving along a curve α.
The various positions of the generating line Y are called the rulings of the surface.
Such a surface has a parametrization in ruled form as follows

ϕ (s, v) = α (s) + vY (s) .

We call α to be base curve and Y to be director line. Alternatively, we may visualize
Y as a vector field on α. Frequently, it is necessary to restrict v to some interval, so
the rulings may not be entire straight lines. If the tangent plane is constant along
a fixed ruling, then the ruled surface is developable surface. The remaining ruled
surfaces are called skew surfaces. If there exists a common perpendicular to two
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preceding rulings in the skew surface, then the foot of the common perpendicular
on the main ruling is called a central point. The locus of the central points is called
the curve of striction, [15].

In the three-dimensional Minkowski space-time E3

1
, a surface is called as a null scroll,

if it produced by the movement of a null curve α of a null line N with direction of
a unit vector e (s) and it is denoted by M . It is easy to check that M is a time-like
surface, [15]. We give the parametrization of this null scroll in the following form

ϕ (s, v) = α (s) + vN (s) .

Throughout this paper N , denotes a unit vector which is a null vector, α is a null
curve. Here we call the curve α as the base curve.

Distribution parameter, mean and Gaussian curvature of a null scroll M are as
follows, respectively

(5) δ = −
det (α′ (s) , N (s) , N ′ (s))

∥

∥

∥

~N ′ (s)
∥

∥

∥

2
,

(6) H =
eG − 2fF + gE

2 (EG − F 2)

and

(7) K =
eg − f2

EG − F 2

where E, F and G are the coefficients of the first fundamental form, whereas e, f
and g are the coefficients of the second fundamental form, [17]. Striction curve of
null scroll, which is non-developable in E3

1
, is given by [15]

(8) β (s) = α (s) −
g (α′ (s) , N ′ (s))

‖N ′ (s)‖
2

N (s) .

3. Some theorems and results on the trajectory null scrolls in E3

1

Let α = α (s) be a null curve given by Cartan frame {ξ, n, u} defined by equation
(1) and (3). We also consider that a null oriented line X in E3

1
such that it is firmly

connected to the Cartan frame of the null curve α is represented, uniquely with
respect to this frame, in the form

(9)
X (s) = x1 (s) ξ (s) + x2 (s)n (s) + x3 (s)u (s) , 〈X (s) , X (s)〉 = 0

(x3 (s))
2
− 2x1 (s)x2 (s) = 0
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where the components xi (s) (1 ≤ i ≤ 3) are the scalar functions of the distinguished
parameter of the Cartan framed base curve α. The trajectory null scrolls generated
by ξ, n and X are

(10) M1 : ϕ1 (s, v) = α (s) + vξ (s)

(11) M2 : ϕ2 (s, z) = α (s) + zn (s)

(12) M3 : ϕ3 (s, w) = α (s) + wX (s)

respectively.
Now we consider the surfaces M1, M2, M3 and give the theorem related to these
trajectory null scrolls (or Mi-surface, 1 ≤ i ≤ 3). First of all we take trajectory
null scroll M1. If one considers equations (5), (6) and (7) with the equation (10),
the following theorem can be given related to the distribution parameter, mean and
Gaussian curvature of the trajectory null scroll M1.

Theorem 1. The distribution parameter of trajectory null scroll M1 is equal to

zero. Furthermore the mean and Gaussian curvature of the trajectory null scroll

M1 are undefined.

As δM1
= 0, the following result can be given.

Result 1. Trajectory null scroll M1 is developable.

Now we take into consideration trajectory null scroll M2. Again equations (5), (6)
and (7) with the equation (11) give us the following theorem.

Theorem 2. The distribution parameter, the mean and Gaussian curvature of the

trajectory null scroll M2 are

δM2
=

1

k2

, HM2
= k2 , KM2

= (k2)
2

respectively.

By taking into consideration the last theorem, the distribution parameter of M2-
surface is not zero, so we give the following result.

Result 2. (i) M2-surface is non-developable.
(ii) Non-developable M2-surface is not minimal.
(iii) There is a relation

HM2
=
√

KM2

between mean and Gaussian curvature of M2-surface.
(iv) The relation

δM2
=

1
√

KM2
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holds between distribution parameter and Gaussian curvature of M2-surface.

If equation (8) is taken into consideration, then the striction curve of non-
developable M2-surface becomes

β (s) = α (s) −
g (α′ (s) , n′ (s))

‖n′ (s)‖
2

n (s) .

With the last equation together equations (3) and (4) one reaches the following
result.

Result 3. The striction curve of M2-surface generated by n in E3

1
is base curve.

Finally we consider trajectory null scroll M3. From equations (5), (6) and (7)
we give the following theorem.

Theorem 3. The distribution parameter, the mean and Gaussian curvature of

M3-surface are

(13) δM3
=

(

x2

3
− x1x2

)

k1 + x2

2
k2 − x′

2
x3 + x2x

′

3

(x1k1 − x2k2 + x′

3
)
2
− 2 (x′

1
− x3k2) (x′

2
+ x3k1)

,

(14) HM3
= −

(

x3

x2

)′

+
k1x1

x2

+ k2

and

(15) KM3
=

[

−

(

x3

x2

)′

+
k1x1

x2

+ k2

]2

respectively.

From equation (13) the following result is reached.

Result 4. (i) If the oriented null line X is in nu-plane (i.e., x1 = 0) and M3-surface
is developable then

k2 =

(

x3

x2

)′

−

(

x3

x2

)2

k1 , x2 6= 0.

(ii) If the oriented null line X is in ξu-plane (i.e., x2 = 0) then M3-surface is
developable.
(iii) If the oriented null line X is in ξn-plane (i.e., x3 = 0) and M3-surface is
developable then

x2 = 0 or
k2

k1

=
x1

x2

, x2 6= 0.

Let us consider equation (9) and the equations (i.) and (iii.) of the result 4.
If the oriented null line X is in both nu-plane (x1 = 0) or ξn-plane (x3 = 0) and
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M3-surface is developable, then curve α is a planar curve, where x2 6= 0. Taking
into consideration equation (14) gives the following result.

Result 5. i. If the oriented null line X is in nu-plane (i.e., x1 = 0) and M3-surface
is minimal then

k2 = −

(

x3

x2

)′

= 0.

This means that the null curve α is a planar curve.
ii. If the oriented null line X is in ξu-plane (i.e., x2 = 0) then mean and Gaussian
curvature of M3-surface is undefined.
iii. If the oriented null line X is in ξn-plane (i.e., x3 = 0) and M3-surface surface is
minimal then

k2

k1

=
x1

x2

, x2 6= 0.

Therefore the null curve α is a planar curve.

Considering equations (14) and (15) gives us the following result.

Result 6. The relation
HM3

=
√

KM3

holds between the mean and Gaussian curvature of trajectory null scroll generated
by the oriented null line X in E3

1
.

If the oriented null line X is constant i.e. dX = 0 and M3-surface is developable
then

(16) x2 =
x2

3
k1

x1k1 − x2k2

,
k2

k1

6=
x1

x2

.

Therefore the following theorem can be given.

Theorem 4. Let α be a null curve and the oriented null line X be a fixed line

that is firmly connected to the Cartan frame of α in E3

1
. If the trajectory null scroll

generated by X is developable then equation (16) exists.

If x1k1 − x2k2 = c = constant in equation (16), then α is a Bertrand offset. So, we
can give the following result.

Result 7. If α is a Bertrand offset, k1 = cx2

x2

3

.

From equation (8), the striction curve of non-developable trajectory null scroll gen-
erated by the oriented null line X in E3

1
parametrically is in the following form

β (s) = α (s) +
x′

2
(s) + x3 (s) k1 (s)

‖X ′ (s)‖
2

X (s) .

From the last equation we give the following theorem.
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Theorem 5. The striction curve of non-developable trajectory null scroll generated

by X in E3

1
is the base curve if and only if

x2 = −

∫

x3k1ds + C.

Unit normal vector η(s, w) of the trajectory null scroll M3 is given by

(17) η(s, w) =
ϕ3s ∧ ϕ3w

||ϕ3s ∧ ϕ3w||
=

α′(s) ∧ X(s) + wX ′(s) ∧ X(s)

||ϕ3s ∧ ϕ3w||
.

Therefore, from equations (1) and (17) unit normal vector of M3-surface at point
(s, 0) is

(18) η (s, 0) =
−x3n + x2u

|x2|
, x2 6= 0.

So, the following theorem can be given.

Theorem 6. If a null curve on trajectory null scroll M3 in E3

1
is a geodesic curve

then x3 = 0 and the base curve of null scroll is a striction curve.

If we consider equations (1), (4), and (18) we find that the geodesic and normal
curvature and geodesic torsion are given by the following equation

(19) kg = g (η ∧ ξ, ξ′) = k1

x3

|x2|
,

(20) kn = g (α′′, η) = k1

x2

|x2|
= ∓k1

and

(21) τg = g (η ∧ η′, ξ) = −k1k2

x3

|x2|

respectively. These three equations imply the following theorem.

Theorem 7. The relation

τg = −k2kg

holds between the torsion and the geodesic torsion of the base curve of trajectory

null scroll M3 in E3

1
.

The last theorem gives the following result.

Result 8. If the base curve of M3-surface is a planar or geodesic curve then τg = 0.
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Example 1. Let a null curve of E3

1
be

(22)
α : IR → E3

1

t → α (t) = (sinh t, t, cosh t)

such that α has a Cartan frame F = (ξ, n, u) defined as follows

(23) ξ (t) =
dα

dt
= (cosh t, 1, sinh t)

(24) n (t) =
1

2
(cosh t,−1, sinh t)

(25) u (t) = (sinh t, 0, cosh t)

Let oriented null line X in E3

1
be firmly connected to the Cartan frame of the null

curve α (t) and represented, uniquely with respect to Cartan frame, in the form

(26) X (t) = x1 (t) ξ (t) + x2 (t)n (t) + x3 (t)u (t)

(27)
〈−→
X (t) ,

−→
X (t)

〉

= 0, (i.e., (x3 (t))
2
− 2x1 (t)x2 (t) = 0)

where the components x1 (t), x2 (t) and x3 (t) are the scalar functions of the dis-
tinguished parameter of the Cartan framed base curve α. Therefore the trajectory
null scrolls generated by ξ, n and X are M1, M2 and M3, respectively. Now, we
first consider M1-surface. From equation (22) and (23), M1-surface is defined para-
metrically as (see Figure I)

(28) M1 : ϕ1 (t, v) = (sinh t, t, cosh t) + v (cosh t, 1, sinh t) .

Considering equation (28) with equations (5), (6) and (7) gives us the distribu-
tion parameter, mean and Gaussian curvature of M1-surface as

δM1
= 0 , HM1

=
0

0
, KM1

=
0

0
,
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respectively.
We now take the M2-surface and write parametrically from equations (22) and (24)
the following relation (see Figure II)

(29) M2 : ϕ2 (t, z) = (sinh t, t, cosh t) +
z

2
(cosh t,−1, sinh t) .

As in M1-surface, we find the following results for the distribution parameter,
mean and Gaussian curvature of M2-surface

δM2
= 2 , HM2

=
1

2
, KM2

=
1

4
,

respectively.
Lastly, we take M3-surface into consideration. From equations (22)-(26) we define
M3-surface parametrically as

M3 : ϕ3 (t, w)(30)

= (sinh t, t, cosh t) + w

(

x1(t) cosh t +
x2(t)

2
cosh t + x3(t) sinh t,

x1(t) −
x2(t)

2
, x1(t) sinh t +

x2(t)

2
sinh t + x3(t) cosh t

)

Considering equation (30) and (5) gives the distribution parameter of M3-surface
as

δM3
=

2
(

x2

2
− 2x2

3
+ 2x1x2 − 2x′

2
x3 + 2x2x

′

3

)

(

4x2

1
+ x2

2
− 4x2

3
+ 4 (x′

3
)2 + 4x1x2 − 8x′

1
x3 + 8x1x′

3
+ 4x2x′

3
− 4x′

2
x3 − 8x′

1
x′

2

) .

From equation (6) the mean curvature of M3-surface becomes

HM3
= −

(

x3

x2

)′

+
x1

x2

−
1

2
.
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Equation (7) gives the Gaussian curvature of M3-surface to be

KM3
=

(

−

(

x3

x2

)′

+
x1

x2

−
1

2

)2

.

Special Case: Let us choose the components in oriented null line X given by equation
(26) as

x1 (t) = cosh t,

x2 (t) =
1

2
cosh t,

x3 (t) = cosh t.

So the trajectory null scroll generated by X (i.e., M3-surface) can be written para-
metrically as (see Figure III)

ϕ3 (t, w) =
(

sinh t + w(5/4 cosh2 t + cosh t sinh t),(31)

t + 3/4w cosh t, cosh t + w(5/4 cosh t sinh t + cosh2 t)
)

If we consider equation (5), the distribution parameter of the trajectory null
scroll equation (31) becomes

δ =
2

3
.

From equation (6) the mean curvature this trajectory null scroll is found to be

H =
3

2
.

Furthermore, the Gaussian curvature of this trajectory null scroll is reached to be

K =
9

4
.
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