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Abstract. In this paper, we study a module which is lifting and supplemented relative

to a module class. Let R be a ring, and let X be a class of R-modules. We will define

X -lifting modules and X -supplemented modules. Several properties of these modules are

proved. We also obtain results for the case of specific classes of modules.

1. Introduction

Throughout this work all rings will be associative with identity and modules
will be unital right modules.

Let R be a ring and let M be a right R−module. We will write N ≤ M to
mean N is a submodule of the module M . A submodule N of M is said to be a
small in M , denoted by N � M , whenever L ≤ M and M = N + L then M = L.
A module M is said to be small if M is small in E(M), the injective hull of M .
Given any submodule N of M , by a supplement of N in M we mean a submodule
K of M , which is minimal in the collection of submodules L with the property
N +H = M(see[10] and [12]). A nonzero module M is called hollow if every proper
submodule of M is small in M . The module M is said to be a lifting module (or
D1−module) if for any submodule N of M there exists A ≤ N such that M = A⊕B
and N ∩B � B. On the other hand, an R-module M is said to be a supplemented
(weakly supplemented) if every submodule of M has a supplement in M (see[10]).
The module M is said to be an amply supplemented if for any two submodules N
and K with M = N + K, N has a supplement in K(see[12]).

By a class X of R-modules we mean a collection of R-modules containing the
zero module and closed under isomorphisms, i.e., any module isomorphic to some
module in X also belongs to X . By an X -module we mean any member of X , and
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64 M. Tamer KoŞan and Abdullah Harmanci

a submodule N of a module M is called X -submodule of M if N is a X -module.
Motivated by the notion of lifting modules and supplemented modules we introduce
here the concept of X -lifting and X -supplemented modules. Lifting modules are
worthy of study in module theory since they are dual of extending modules, and
there has been a great deal of work on lifting modules by many authors. As a
generalization of lifting modules supplemented, weakly supplemented and amply
supplemented modules are also studied in [8], [10] and [12]. Generalizations of
supplemented and semiperfect modules with respect to a torsion theory have been
considered in the literature (see for instance [7] and [13]). A similar approach (with
more general classes than torsion theories) had been considered in [2]. Extending
modules relative to module classes have been studied in [4], [5] and [6] and also in
[14]. In this paper, we investigate these modules relative to a class X of modules.

Therefore we define X -lifting, X -supplemented and X -amply supplemented mod-
ules. Various general properties of such modules are given. An X -submodule N
of M is called X -supplement if N is a supplement of some submodule in M . An
R−module M is said to be a X -supplemented module if every X -submodule of M
has a supplement in M . The module M is said to be a X -lifting module if for every
X -submodule N of M there exists A ≤ N such that M = A⊕B and N ∩B � B.
A module M is called a X -amply supplemented if every X -submodule N of M such
that M = N + K, K contains a supplement of N in M . Let M denote the class of
all R-modules. Then a module M is lifting (supplemented or amply supplemented)
if and only if M is M-lifting (M-supplemented or M-amply supplemented). For a
class X of R-modules, a module M is X -lifting if and only if every X -submodule
N of M has a decomposition N = K ⊕ L, where K is a direct summand of M and
L � M . Every X -supplement submodule of M is X -coclosed, and if M is X -amply
supplemented, then then every X -coclosed submodule is X -supplement submodule
of M .

X1.X2. · · · Xn, ⊕n
i=1Xi and X1 : X2 from old ones and study lifting property

with respect to these classes. In particular, we use H for the class of all hollow R-
modules, fH for all R−modules with finite hollow dimension, S for the semisimple
R-modules and F for all finitely generated R−modules. Among others we prove,
under some restrictions that M is H-lifting if and only if M is fH-lifting. And M
is S- and F-lifting if and only if S : F-lifting.

2. The results

The following lemma is clear from definitions.

Lemma 2.1. Let X be any class of R-modules. Then every X -lifting module is
X -supplemented and X -amply supplemented.

There are X -supplemented modules, which are not X -lifting.

Example 2.2. Let Z denote the ring of integers and consider the Z-module M =
N ⊕ (U/V ) , where N = Z/8Z and the submodules U = 2Z/8Z and V = 4Z/8Z
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of N . Let 0 and 2 denote the elements of U/V . Let X = {X ∈ Mod − Z : X2 6=
0}∪{0}, and N1 = (1, 2)Z, N2 = (2, 0)Z, N3 = (2, 2)Z, N4 = (1, 0)Z, N5 = (4, 0)Z
and N6 = (4, 2)Z. Then N1, N2, N3 and N4 are X -submodules, N1 and N4 are
direct summands of M and N2 � M , M = N1 + N3, N5 = N1 ∩N3, N5 � M and
M = N1 ⊕N6. It follows that M is X -supplemented. It is easily checked that N3

is neither small in M nor has any nonzero submodule which is direct summand of
M . Hence M is not X -lifting.

Lemma 2.3. Let M be a module. We consider the following for a class X :

(1) M is X -lifting if and only if every X -submodule N of M has a decomposition
N = K ⊕ L, where K is a direct summand of M and L is small in M .

(2) Every direct summand of a X -lifting module is X -lifting.

(3) M is X -lifting module if and only if every X -supplement submodule of M is
direct summand and M is X -supplemented

Proof. (1) Let N be a X -submodule of M . If M is X -lifting then N contains a
direct summand K of M such that M = K ⊕ K ′ and N ∩ K ′ is small in K ′. So
N = K⊕ (N ∩K ′) and N ∩K ′ is small in M . Conversely, let N be a X -submodule
of M . By assumption, N = K ⊕ L, where M = K ⊕ K ′ and L � M . Then
N ∩K ′ ∼= L, and since L is small in M and K ′ is direct summand, N ∩K ′ is small
in K ′.
(2) Let M = M1 ⊕M2 be a X -lifting module and N a X -submodule of M1. Then
N is X -submodule of M , and so there exists a direct summand K of M such that
K ≤ N and M = K ⊕ L and N ∩ L � L. Then M1 = K ⊕ (M1 ∩ L) and
N ∩ L � M1 ∩ L.
(3) Let N be a X -supplement of a submodule U of M . Then M = N + U and
N ∩ U � N . By (1), N = K ⊕ L, where M = K ⊕ K ′ and L � M . Hence
M = K⊕U and N = K⊕ (N ∩U). This implies that N = K. The rest is clear. �

Example 2.4.

(i) Let X be the class of all torsion Z-modules. The zero submodule of Z is the
only X -submodule of Z. Hence the Z-module Z is a X -lifting module.

(ii) Let X be the class of all torsion free Z-modules. The zero submodule is the
only small submodule of Z, and for any non-zero submodules N and K with
N + K = Z, N ∩K is not a small submodule of Z and so the Z-module Z is
not X -lifting module.

(iii) Let X denote the class of all finitely generated Z- modules. Since every
X -submodule of Q and Q/Z is small, Q and Q/Z are X -lifting modules.

(iv) Let X be the class of all torsion free Z-modules and p any prime integer and
M = (Z/pZ)⊕Z. It is clear that from (ii) and Lemma 2.3, the Z-module M
is not X -lifting.
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(v) Let R be a ring and X denote the class of all injective R-modules. Then
every R-module M is X -lifting. Let N be a X -submodule of the module M .
Then N is injective R-submodule of M and so N is a direct summand of M .

(vi) Let P denote the class of projective modules and assume that any injective
module is P-lifting. Then every projective is the direct sum of an injective
and a small module. Those types of decompositions occur in the study of
H-rings (Harada-Rings)(see[11]).

(vii) Let R be a ring and F denote the class of all finitely generated R−modules.
F-supplemented modules are called f-supplemented in the literature. We
take the polynomial ring C[x] in one variables over complex numbers C. The
localization R = C[x](x) of C[x] by the maximal ideal generated by x is a
discrete valuation ring. Let M = C[[x]] be the power series ring over C. Then
M is an R-module such that M = R + xM and thus x(M/R) = M/R. If N
were a supplement of R in M , then M = R + N implied M/R ∼= N/(N ∩R).
Hence x(N/(N ∩ R)) = N/(N ∩ R) and thus N = xN + (N ∩ R) = xN as
N ∩ R is small in N . This implies N = ∩∞k=1x

kN ⊆ ∩∞k=1x
kM = 0. Hence

R = M = C[[x]], which is incorrect. Therefore the cyclic module R has
no supplement in the R-module M = C[[x]], i.e., M is not f -supplemented,
although R is local (semiperfect).

Remark: It is actually possible to show that over a commutative noetherian ring
a finitely generated module has a supplement in any module extension if and only
if it is linearly compact. Hence every module is f -supplemented if and only if every
finitely generated module has a supplement in any module extension of it.

Let X and Y be classes of modules. We write X ≤ Y in case every object of X
is in Y. The next result is clear.

Lemma 2.5. Let X and Y be classes of modules with X ≤ Y. Every Y-lifting (or
Y-supplemented) module is X -lifting (or Y-supplemented).

Example 2.6. Let X = {X ∈ Mod−Z : X2 = 0} and Y = {Y ∈ Mod−Z : Y 4 =
0} and let M be the Z−module (Z/2Z)⊕ (Z/8Z). Then X ≤ Y and M is X -lifting
but not an Y-lifting module.

Proof. The submodules N1 = (1, 0)Z, N2 = (0, 4)Z and N3 = N1 ⊕ N2 are X -
submodules of M . Let N4 = (0, 1)Z. Then M = N3 + N4 = N1 ⊕ N4, N1 ≤ N3

and N3 ∩N4 = N2 � N4, and since N1 is direct summand, we have M is X -lifting.
Let N = (1, 2)Z. Then N is an Y−submodule of M and it does not contain any
submodule as a direct summand of M . Hence M is not an Y-lifting module (see
also [8]). �

Let n be a positive integer and let Xi(1 ≤ i ≤ n) be classes of R-modules.
Classes of R-modules can be combined in different ways to give other classes and we
examine how lifting and supplemented properties behave under these constructions.
Then ⊕n

i=1Xi is defined to be the class of R-modules M such that M = ⊕n
i=1Mi



Modules Which Are Lifting Relative To Module Classes 67

is direct sum of Xi-submodules Mi (1 ≤ i ≤ n). In particular, if Xi = X we shall
denote the class ⊕n

i=1Xi by X⊕. Then for each i with 1 ≤ i ≤ n, Xi ≤ ⊕n
i=1Xi.

Theorem 2.7. With the above notation, an R-module M is (⊕n
i=1Xi)-lifting if and

only if M is Xi-lifting for all 1 ≤ i ≤ n.

Proof. The necessity follows by Lemma 2.5. To prove the converse we can suppose
by induction that n = 2. Assume that M is X1 and X2- lifting. Let N be a X1⊕X2-
submodule of M . Then there exist a X1-submodule N1 and a X2-submodule N2 of
M such that N = N1⊕N2. By assumption, there exist direct summands K1 and K2

of M with K1 ≤ N1 and K2 ≤ N2 such that M = K1⊕K ′
1 and M = K2⊕K ′

2 with
N1∩K ′

1 � K ′
1 and N2∩K ′

2 � K ′
2. Notice that N1 is isomorphic to (N1⊕K2)∩K ′

2.
Then (N1⊕K2)∩K ′

2 is a X1-module. By hypothesis, there exists A ≤ (N1⊕K2)∩K ′
2

such that M = A ⊕ B and ((N1 ⊕ K2) ∩ K ′
2) ∩ B � B for some B ≤ M . Then

N1⊕K2 = A⊕((N1⊕K2)∩B), K ′
2 = A⊕(K ′

2∩B) and A⊕K2 = A⊕((A⊕K2)∩B).
Hence

N1 ⊕K2 = A + K2 + ((N1 + K2) ∩K ′
2) = ((A⊕K2) ∩B) + ((N1 ⊕K2) ∩K ′

2).

We intersect N1 ⊕K2 by B to obtain

(N1 ⊕K2) ∩B = ((A⊕K2) ∩B) + ((N1 ⊕K2) ∩K ′
2 ∩B) ≤ A⊕K2 ⊕ (K ′

2 ∩B).

It follows that M = N1+K2+K ′
2 = A+(N1⊕K2)∩B+(K ′

2∩B) = A⊕K2⊕(K ′
2∩B).

Hence A⊕K2 is a direct summand of M . Since M = A + K2 + K ′
2 and A⊕K2 ≤

N1 ⊕K2 and N2 = K2 ⊕ (N2 ∩K ′
2), N1 ⊕K2 = A ⊕K2 ⊕ ((N1 ⊕K2) ∩K ′

2 ∩ B).
Hence N = N1 ⊕K2 ⊕ (N2 ∩K ′

2) = A⊕K2 ⊕ ((N1 ⊕K2) ∩K ′
2 ∩B)⊕ (N2 ∩K ′

2),
where A⊕K2 is a direct summand of M and ((N1 + K2)∩K ′

2 ∩B)⊕ (N2 ∩K ′
2) is

small in M . By Lemma 2.3, M is X1 ⊕X2−lifting. �

Corollary 2.8. Let X be a class of R−modules. A module M is X⊕-lifting if and
only if M is X -lifting.

The following example is as an illustration of Theorem 2.7.

Example 2.9. Let M denote the Z−module (Z/2Z) ⊕ (Z/8Z) ⊕ (Z/3Z). Let
X1 = {X ∈ Mod − Z : X2 = 0}, X2 = {X ∈ Mod − Z : X3 = 0} and Y = {Y ∈
Mod − Z : Y 4 = 0}. Then it is easily seen that M is X1, X2 and X1 ⊕ X2-lifting
module. It has observed in Example 2.6 that the Z-module (Z/2Z)⊕(Z/8Z), which
is a direct summand of M is not Y-lifting. Hence M is not Y-lifting.

Let M be a module and {Nλ}λ∈Λ a family of submodules of M . The family
{Nλ}λ∈Λ is called coindependent if for any λ ∈ Λ and any finite subset F ⊆ Λ−{λ},
M = Nλ +∩β∈F Nβ with the convention, that the intersection with an empty index
set is set to be M .

For any ring R, H will denote the class of hollow R−modules and fH will denote
the class of all R−modules with finite hollow dimension. Recall that fH consists
of all R−modules M , which do not contain an infinite coindependent family of
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submodules, equivalently M contains a finite coindependent family of submodules
{N1, N2, · · · , Nn} such that ∩n

i=1Ni is small in M and M/Ni is hollow module
for every 1 ≤ i ≤ n. Note that H and fH are closed under isomorphisms, factor
modules and direct summands and H ⊆ fH. Note that a module M is hollow if and
only if every coindependent family of submodules has exactly one element(See[9]).

Lemma 2.10. Let M be an H-lifting module. Then every hollow submodule of M
is small or a direct summand of M .

Proof. Let M be an H-lifting module and N a hollow submodule of M . Then N is
an H-submodule and so there exists A ≤ N such that M = A⊕B with N ∩B � B.
Hence N = A or N = N ∩B. �

Proposition 2.11. Let M be a module of which submodules having finite hollow
dimension are amply supplemented. Then any submodule of finite hollow dimension
is either small in M or contains a hollow submodule which is non-small in M .

Proof. Let N be any submodule of finite hollow dimension in the module M .
We may assume by induction that N has hollow dimension two so that N has
submodules N1 and N2 such that N = N1 + N2 and N/Ni is hollow for i = 1, 2. By
hypothesis there exists L2 ≤ N2 such that N = N1 + L2 with N1 ∩L2 << L2. It is
easily seen that L2 is hollow module. If L2 is not small in M , we are done. Assume
that L2 � M . By hypothesis there exists L1 ≤ N1 such that N = L1 + L2 with
L1 ∩ L2 � L1. Then L1 is hollow module. If L1 is not small in M , then we are
done. Otherwise N = L1 + L2 is small in M as required. �

Theorem 2.12. Let M be a module of which submodules having finite hollow
dimension are amply supplemented. Then M is H-lifting if and only if M is fH-
lifting.

Proof. Since H ⊆ fH sufficiency follows by Lemma 2.5. Assume that M is H-lifting
and let N be any fH-submodule of M . If N is small in M , we are done. Assume
that N is not a small submodule of M . Let n denote the hollow dimension of
N . Then N contains a finite coindependent family of submodules {N1, N2, ..., Nn}
such that ∩n

i=1Ni is small in N and N/Ni is hollow module for every 1 ≤ i ≤ n
(see [9 ,3.1.2, page 30]). By Lemma 2.10 and Proposition 2.11, there exists a
hollow submodule L1 of N such that M = L1 ⊕ L′1. If N ∩ L′1 � L′1, there is
nothing to prove. So assume that N ∩ L′1 is not small in L′1. Then N ∩ L′1 is not
small in M and it has finite hollow dimension. By the same reasoning, N ∩ L′1
contains a direct summand L2 of M = L2 ⊕ L′2 so that M = L1 ⊕ L2 ⊕ (L′1 ∩ L′2)
and N = L1 ⊕ L2 ⊕ (N ∩ (L′1 ∩ L′2)). If N ∩ (L′1 ∩ L′2) is not small in L′2, we
repeat the same procedure so that N ∩ (L′1 ∩ L′2) contains a direct summand L3,
we have M = L3 ⊕ L′3, and then M = L1 ⊕ L2 ⊕ L3 ⊕ (L1 ∩ L2 ∩ L3) and N =
L1 ⊕ L2 ⊕ L3 ⊕ (N ∩ (L′1 ∩ L′2 ∩ L′3)). If (N ∩ (L′1 ∩ L′2 ∩ L′3) is not small in M ,
we proceed on this way so that M = ⊕k

i=1Li ⊕Mk and N = ⊕k+1
i=1 Li ⊕Nk, where

Mk = ∩k
i=1L

′
i and Nk = N ∩ Mk. Hence we obtain a sequence of submodules

N ≥ N1 ≥ N2 ≥ N3 ≥ .... Since N has finite hollow dimension, there exists j
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such that for every t ≥ j, Nj/Nt is small in N/Nt. By construction of submodules
Nk(k =1,2,· · · ), Nj/Nt is isomorphic to a direct summand of N/Nt. This is a
contradiction being N of finite hollow dimension. Hence there exists a finite integer
t such that N = (⊕t

i=1Li)⊕Nt, where ⊕t
i=1Li is a direct summand of M and Nt is

small in L′t and in M . This completes the proof by Lemma 2.3. �

Let Xi(1 ≤ i ≤ n) be classes of R-modules. Following [4], X1.X2. · · · Xn will
denote the class of R-modules M such that there exists a chain of submodules
0 = N0 ≤ N1 ≤ · · · ≤ Nn = M such that Ni/Ni−1 is a Xi-module (1 ≤ i ≤ n), and
if Ni−1 is a small submodule of M then Ni is a Xi-module (2 ≤ i ≤ n). Note that
Xi ≤ X1.X2. · · · .Xn for all 1 ≤ i ≤ n. On the other hand X1 : X2 will denote the
class of R-modules M such that there exists a submodule N of M such that N is a
X1-module and M/N is a X2-module. Then X1 ≤ X1 : X2 and X2 ≤ X1 : X2.

Theorem 2.13. Let Xi(1 ≤ i ≤ n) be classes of R-modules. Then an R−module
M is Xi-lifting for every 1 ≤ i ≤ n if and only if M is X1.X2. · · · Xn-lifting.

Proof. The sufficiency follows by Lemma 2.5. Conversely, we may assume by
induction that n = 2. Assume that M is Xi-lifting for i = 1,2 and let N be
a X1.X2-submodule of M . Then there exists a nonzero submodule N1 such that
N1 ∈ X1 and N/N1 ∈ X2. Since M is X1-lifting, there exists A1 ≤ N1 and B1 ≤ M
such that M = A1 ⊕ B1 and N1 ∩ B1 � B1. Then N1 = A1 ⊕ (N1 ∩ B1) and
N = A1 ⊕ (N ∩ B1). Since (N ∩ B1)/(N1 ∩ B1) ∼= N/N1 ∈ X2 and N1 ∩ B1 is a
small submodule of M , by hypothesis, N ∩ B1 ∈ X2. By assumption, there exist
A2 ≤ N ∩B1 and B2 ≤ M such that M = A2⊕B2 and (N ∩B1)∩B2 � B2. Then
B1 = A2 ⊕ (B1 ∩ B2),M = A1 ⊕ A2 ⊕ (B1 ∩ B2) and N ∩ B1 ∩ B2 � M . Hence
N = A1 ⊕A2 ⊕ (N ∩B1 ∩B2). By Lemma 2.3, M is a X1.X2-lifting module. �

Lemma 2.14. Let M be a module and let X1 and X2 be classes of R-modules. If
M is X1 : X2-lifting, then M is Xi-lifting for i = 1,2.

Proof. Clear from Lemma 2.5. �

Example 2.15 shows that the converse of Lemma 2.14 is not true in general.

Example 2.15. There are modules classes X1 and X2 and a module M such that
M is both X1 and X2-lifting but not X1 : X2-lifting.

Proof. Let p be any prime integer and X1 = X2 = {T ∈ Mod − Z : Tp = 0}
and M = (Z/pZ) ⊕ (Z/p3Z). Let M1 = (1, 0)Z, N = (1, p)Z, N1 = (0, p2)Z,
N = M1 ⊕N1. Then M1, N1 and N2 are all X1 and X2 submodules of M , M1 is a
direct summand and N1 is small in M . By Lemma 2.3, M is both X1 and X2-lifting
module. Also N1 is an X1-module and N/N1 is an X2-module. Hence N is an
X1 : X2-submodule of M . It is easy to check that N is neither small nor a direct
summand nor contains any direct summand of M . Hence M is not a X1 : X2-lifting
module. �

Theorem 2.16. Let S denote the class of all semisimple R-modules and F the
class of all finitely generated R-modules. Then a module M is both S and F-lifting
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if and only if M is S : F-lifting.

Proof. One way is clear by Lemma 2.14. Assume that the module M is S-lifting and
F-lifting. Let N be any S : F-submodule of M . Then there exists N1 ≤ N such that
N1 ∈ S and N/N1 ∈ F . By assumption, there exists A ≤ N1 such that M = A⊕B
and N1 ∩ B � B. Then N/N1

∼= (N ∩ B)/(N1 ∩ B). Since N/N1 is an F-module,
there exists C ≤ N ∩ B such that C is an F-module and N ∩ B = C + (N1 ∩ B).
Since N1 ∩ B is semisimple, N ∩ B = C ⊕ L for some L ≤ N1 ∩ B. Since C is
F-module, there exists U ≤ C such that M = U ⊕ V and C ∩ V � V for some
V ≤ M . Hence M = A⊕U ⊕ (B∩V ) and N = A⊕U ⊕ ((C ∩V )⊕L). Since A⊕U
is a direct summand of M and (C ∩ V )⊕L is small in M , this completes the proof
by Lemma 2.3. �

Proposition 2.17. Let F be the class of all finitely generated R-modules and M
an indecomposable R-module. Then M is F-lifting if and only if RadM = M or M
is local module.

Proof. Sufficiency is clear. For the necessity assume that M is a F-lifting module.
Let x ∈ M . Then there exist A ≤ xR and B ≤ M such that M = A ⊕ B and
(xR) ∩B � B. By hypothesis, two cases arise M = A or A = 0. First case implies
M = xR and so RadM is small in M . Hence M is local. In the second case M = B.
Then xR is small in M . Assume that M is not local module. Then for each x ∈ M
the second case will occur and xR will be small in M . It follows that RadM = M .
�

Can we characterize X -lifting modules via objects of the class X ? For this
question, TX (M) will denote trace of X in M , i.e., the sum of X -submodules of M .

Lemma 2.18. Let X be any class of R-modules. Then TX (M) = Σ{TX (N) : N is
a X -submodule of M}.
Proof. Clear. �

Lemma 2.19. Assume that X is closed under homomorphic images and f : M −→
N is a homomorphism from a module M to a module N . Then f(TX (M)) ≤ TX (N).

Proof. Because if A is a X -submodule of M , then f(A) is a X -submodule of N . �

Corollary 2.20. Assume that X is closed under direct sums and homomorphic
images. Let a module M = ⊕i∈IMi be a direct sum of modules Mi for all i ∈ I.
Then TX (M) = ⊕i∈ITX (Mi).

Proof. For each i ∈ I, πi : M −→ Mi be the canonical projection. By Lemma 2.19,
πi(TX (M)) ≤ TX (Mi) for all i ∈ I. Hence TX (M) ⊆ ⊕i∈ITX (Mi). Conversely,
⊕i∈ITX (Mi) ⊆ TX (M) by Lemma 2.18. �

Obviously, if M does not contain any non-zero X -submodule, i.e. TX (M) = 0,
then M is trivialy X -lifting.
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Example 2.21. Let X be the class of all torsion Z-modules and M be the Z-
module Z. Since the zero submodule of Z is the only X -submodule of M , i.e.,
TX (M) = 0, M is X -lifting (compare with Example 2.4 (i)).

Remark. What if X is closed under direct sums and homomorphic images, then
TX (M) belongs to X . Hence, we should be characterize X -lifting module M via
TX (M).
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