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Abstract. In this article, we deal with the uniqueness problems on meromorphic func-

tions concerning differential polynomials that share fixed-points. Moreover we extend

former results of W. C. Lin and H. X. Yi.

1. Introduction, definitions and results

In this paper, the term meromorphic will always mean meromorphic in the com-
plex plane C. Let a be a complex number and α(z) be a meromorphic function such
that T (r, α) = o(T (r, f)), we say f and g share the value a CM, if f − a and g − a
assume the same zeros with the same multiplicity ; if f(z) − α(z) and g(z) − α(z)
assume the same zeros with the same multiplicities, then we say f(z) and g(z)
share α(z) CM, especially we say that f(z) and g(z) have the same fixed-points
when α(z) = z. It is assumed that the reader is familiar with the notations of the
Nevanlinna theory, that can be found, for instance, in [4]. Set

Nk

(
r,

1
f − a

)
= N

(
r,

1
f − a

)
+ N2

(
r,

1
f − a

)
+ · · ·+ Nk

(
r,

1
f − a

)
.

It is well known that if f and g share four distinct values CM, then f is a fractional
transformation of g. In 1997, corresponding to one famous question of Hayman,
C. C. Yang and X. H. Hua showed the similar conclusions hold for certain types of
differential polynomials when they share only one value. They proved the following
result.

Theorem A([7]). Let f and g be two nonconstant meromorphic functions, n ≥ 11
an integer and a ∈ C − {0}. If fnf ′ and gng′ share the value a CM, then either
f = dg for some (n+1)th root of unity d or g(z) = c1e

cz and f(z) = c2e
−cz, where

c, c1 and c2 are constants and satisfy (c1c2)n+1c2 = −a2.

In 2001, M. L. Fang and W. Hong obtained the following result.
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Theorem B([2]). Let f and g be two transcendental entire functions, n ≥ 11 an
integer. If fn(f − 1)f ′ and gn(g − 1)g′ share the value 1 CM, then f ≡ g.

Recently, W. C. Lin and H. X. Yi extended the above theorem in view of the
fixed-point. They proved the following results.

Theorem C([5]). Let f and g be two transcendental meromorphic functions, n ≥
12 an integer. If fn(f − 1)f ′ and gn(g − 1)g′ share z CM, then either f(z) ≡ g(z)
or

f =
(n + 2)h(1− hn+1)
(n + 1)(1− hn+2)

g =
(n + 2)(1− hn+1)
(n + 1)(1− hn+2)

where h is a nonconstant meromorphic function.

Theorem D([5]). Let f and g be two transcendental meromorphic functions, n ≥
13 an integer. If fn(f − 1)2f ′ and gn(g − 1)2g′ share z CM, then f ≡ g.

Now one may ask the following question which is the motivation of the paper:
Can the nature of fixed-point z be relaxed to IM in the above theorems? In the
paper, we investigate the solution of the above question. We now state the following
two theorems which answer the above question.

Theorem 1. Let f and g be two transcendental meromorphic functions, n ≥ 27 an
integer. If fn(f − 1)f ′ and gn(g − 1)g′ share z IM, then either f(z) ≡ g(z) or

f =
(n + 2)h(1− hn+1)
(n + 1)(1− hn+2)

,

g =
(n + 2)(1− hn+1)
(n + 1)(1− hn+2)

.

Theorem 2. Let f and g be two transcendental meromorphic functions, n ≥ 28 an
integer. If fn(f − 1)2f ′ and gn(g − 1)2g′ share z IM, then f ≡ g.

2. Some lemmas

In this section, we present some lemmas which will be needed in the sequel. We
will denote H the following function :

H =
(

F ′′

F ′
− 2

F ′

F − 1

)
−
(

G′′

G′
− 2

G′

G− 1

)
.

Lemma 1([6]). Let f be a nonconstant meromorphic function, and let a1, a2, · · · , an

be finite complex numbers, an 6= 0. Then

T (r, anfn + · · ·+ a2f
2 + a1f + a0) = nT (r, f) + S(r, f).
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Lemma 2([1]). Let f , g be two nonconstant meromorphic functions such that they
share 1 IM and H 6≡ 0, then

T (r, f) ≤ N2

(
r,

1
f

)
+ N2(r, f) + N2

(
r,

1
g

)
+ N2(r, g) + 2N

(
r,

1
f

)
+ 2N(r, f)

+N

(
r,

1
g

)
+ N(r, g) + S(r, f) + S(r, g).

Lemma 3(e[3]). Let

Q(ω) = (n− 1)2(ωn − 1)(ωn−2 − 1)− n(n− 2)(ωn−1 − 1)2

then
Q(ω) = (ω − 1)4(ω − β1)(ω − β2) · · · (ω − β2n−6)

where βj ∈ C − {0, 1} (j = 1, 2, · · · , 2n− 6), which are distinct respectively.

Lemma 4([9]). Let f be a nonconstant meromorphic function, k be a positive
integer, then

Np

(
r,

1
f (k)

)
≤ Np+k

(
r,

1
f

)
+ kN(r, f) + S(r, f)

where Np

(
r,

1
f (k)

)
denotes the counting function of the zeros of

1
f (k)

where a zero

of multiplicity m is counted m times if m ≤ p and p times if m > p. Clearly

N

(
r,

1
f (k)

)
= N1

(
r,

1
f (k)

)
.

Lemma 5. Let f and g be two nonconstant meromorphic functions, m < 7,
n > 7 − m positive integers, α(z) denotes as in Section 1 and α 6≡ 0,∞, and
let

F = fn(f − 1)mf ′, G = gn(g − 1)mg′

If F and G share α(z) IM, then S(r, f) = S(r, g).

Proof. By Lemma 1, we have

(n + m)T (r, f) = T (r, fn(f − 1)m) + S(r, f) ≤ T (r, F ) + T (r, f ′) + S(r, f)

Therefore
T (r, F ) ≥ (n + m− 2)T (r, f) + S(r, f)
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By the second fundamental theorem and Lemma 4, we have

T (r, F )

≤ N(r, F ) + N

(
r,

1
F

)
+ N

(
r,

1
F − α

)
+ S(r, f)

≤ N(r, f) + N

(
r,

1
f

)
+ N

(
r,

1
f − 1

)
+ N

(
r,

1
f ′

)
+ N

(
r,

1
G− α

)
+ S(r, f)

≤ 5T (r, f) + T (r, G) + S(r, f)

Note that T (r, G) ≤ T (r, gn(g − 1)m) + T (r, g′) ≤ (n + m + 2)T (r, g) + S(r, g), we
deduce that

(n + m− 7)T (r, f) ≤ (n + m + 2)T (r, g) + S(r, g) + S(r, f)

It follows that the conclusion holds. �

Lemma 6([8]). Let H be defined as above. If H ≡ 0 and

lim sup
r→∞

N
(
r, 1

F

)
+ N(r, F ) + N

(
r, 1

G

)
+ N(r, G)

T (r)
< 1, r ∈ I

where T (r) = max{T (r, F ), T (r, G)} and I is a set with infinite linear measure,
then F ≡ G or FG ≡ 1.

3. Proof of the main theorems

Proof of Theorem 1. Lemma 4 implies that S(r, f) = S(r, g). Let

(3.1) F =
fn(f − 1)f ′

z

(3.2) G =
gn(g − 1)g′

z

and

(3.3) F ∗ =
1

n + 2
fn+2 − 1

n + 1
fn+1

(3.4) G∗ =
1

n + 2
gn+2 − 1

n + 1
gn+1

Thus we obtain that F and G share 1 IM. Moreover, by Lemma 1, we have

(3.5) T (r, F ∗) = (n + 2)T (r, f) + S(r, f),
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(3.6) T (r, G∗) = (n + 2)T (r, g) + S(r, g).

Since (F ∗)′ = Fz, we deduce

(3.7) m

(
r,

1
F ∗

)
≤ m

(
r,

1
zF

)
+ S(r, f) ≤ m

(
r,

1
F

)
+ log r + S(r, f)

and by the first fundamental theorem

(3.8) T (r, F ∗) ≤ T (r, F ) + N

(
r,

1
F ∗

)
−N

(
r,

1
F

)
+ log r + S(r, f).

Note that

(3.9) N

(
r,

1
F ∗

)
= (n + 1)N

(
r,

1
f

)
+ N

(
r,

1
f − n+2

n+1

)
,

(3.10) N

(
r,

1
F

)
= nN

(
r,

1
f

)
+ N

(
r,

1
f − 1

)
+ N

(
r,

1
f ′

)
.

So we have

T (r, F ∗) ≤ T (r, F ) + N

(
r,

1
f

)
+ N

(
r,

1
f − n+2

n+1

)
+ log r(3.11)

−N

(
r,

1
f − 1

)
−N

(
r,

1
f ′

)
+ S(r, f).

Similarly we have

T (r, G∗) ≤ T (r, G) + N

(
r,

1
g

)
+ N

(
r,

1
g − n+2

n+1

)
+ log r(3.12)

−N

(
r,

1
g − 1

)
−N

(
r,

1
g′

)
+ S(r, g).

Since F and G share 1 IM, by Lemma 2 we have

T (r, F ) + T (r, G)(3.13)

≤ 2(N2

(
r,

1
F

)
+ N2(r, F ) + N2

(
r,

1
G

)
+ N2(r, G)) + 3N

(
r,

1
F

)
+3N(r, F ) + 3N

(
r,

1
G

)
+ 3N(r, G) + S(r, F ) + S(r, G).

Obviously we have

N2(r, F ) + N2

(
r,

1
F

)
(3.14)

≤ 2N(r, f) + 2N

(
r,

1
f

)
+ N

(
r,

1
f − 1

)
+ N

(
r,

1
f ′

)
+ log r,
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N2(r, G) + N2

(
r,

1
G

)
(3.15)

≤ 2N(r, g) + 2N

(
r,

1
g

)
+ N

(
r,

1
g − 1

)
+ N

(
r,

1
g′

)
+ log r.

So from (3.11), (3.12) we have

T (r, F ∗) + T (r, G∗)(3.16)

≤ T (r, F ) + T (r, G) + T (r, F ) + N

(
r,

1
f

)
+ N

(
r,

1
f − n+2

n+1

)
+ log r

−N

(
r,

1
f − 1

)
−N

(
r,

1
f ′

)
+ N

(
r,

1
g

)
+ N

(
r,

1
g − n+2

n+1

)
+ log r

−N

(
r,

1
g − 1

)
−N

(
r,

1
g′

)
+ S(r, f).

By (3.13), (3.14), (3.15), (3.16) we get

(3.17) (n− 26)T (r, f) + (n− 26)T (r, g) ≤ 6 log r + S(r, f) + S(r, g).

We obtain that n ≤ 26 which contradicts n ≥ 27. Therefore H ≡ 0. That is

(3.18)
F ′′

F ′
− 2

F ′

F − 1
≡ G′′

G′
− 2

G′

G− 1
.

By integration, we have

(3.19)
A

F − 1
+ B =

1
G− 1

where A(6= 0) and B are constants. Thus

(3.20) T (r, F ) = T (r, G) + S(r, f).

Since

(3.21) N

(
r,

1
f ′

)
≤ T (r, f ′)−m

(
r,

1
f ′

)
≤ 2T (r, f)−m

(
r,

1
f ′

)
+ S(r, f),

we note that

N

(
r,

1
F

)
+ N

(
r,

1
G

)
+ N(r, F ) + N(r, G)(3.22)

≤ N

(
r,

1
f

)
+ N

(
r,

1
g

)
+ N(r, f) + N(r, g)

+N

(
r,

1
f − 1

)
+ N

(
r,

1
g − 1

)
+ N

(
r,

1
f ′

)
+ N

(
r,

1
g′

)
+2 log r + S(r, f)
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and

T (r, F ) + m

(
r,

1
f ′

)
= T

(
r,

fn(f − 1)f ′

z

)
+ m

(
r,

1
f ′

)
(3.23)

≥ T (r, fn(f − 1))− log r.

Similarly we have

(3.24) T (r, G) + m

(
r,

1
g′

)
≥ T (r, fn(f − 1))− log r.

From (3.21), (3.22), (3.23), (3.24) and we apply Lemma 6, we get F ≡ G or FG ≡ 1.
We discuss the following two cases.

Case 1. Suppose that FG ≡ 1. That is

(3.25) fn(f − 1)f ′gn(g − 1)g′ ≡ z2.

Let z0(6= 0,∞) be a zero of f of order p, so z0 is a pole of g. Suppose that z0 is
pole of g of order q. From above we obtain

(3.26) np + p− 1 = nq + 2q + 1

that is, (n + 1)(p − q) = q + 2, which implies that p ≥ q + 1 and q + 2 ≥ n + 1.
Hence p ≥ n. Let z1(6= 0,∞) be a zero of f −1 of order p1, then we can also deduce
that p1 ≥

n

2
+ 2. Let z2(6= 0,∞) be a zero of f ′ of order p2 that is not a zero of

f(f − 1), we similarly have p2 ≥ n + 3. Moreover, in the same manner as above,
we have the similar results for the zeros of gn(g− 1)g′. On the other hand, suppose
that z3(6= 0,∞) is a pole of f , we get that z3 is the zero of gn(g − 1)g′, thus

N(r, f) ≤ N

(
r,

1
g

)
+ N

(
r,

1
g − 1

)
+ N

(
r,

1
g′

)
(3.27)

≤ 1
27

N

(
r,

1
g

)
+

2
31

N

(
r,

1
g − 1

)
+

1
30

N

(
r,

1
g′

)
<

2
3
T (r, g) + S(r, g).

By the second fundamental theorem, we have

T (r, f) ≤ N

(
r,

1
f

)
+ N

(
r,

1
f − 1

)
+ N(r, f) + S(r, f)(3.28)

<
5
24

T (r, f) +
2
3
T (r, g) + 2 log r + S(r, g).

Similarly we have

(3.29) T (r, g) <
5
24

T (r, g) +
2
3
T (r, f) + 2 log r + S(r, f).
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From (3.28), (3.29) we deduce a contradiction.

Case 2: If F ≡ G. That is

(3.30) F ∗ ≡ G∗ + c,

where c is a constant. It follows that

(3.31) T (r, f) = T (r, g) + S(r, f).

Suppose that c 6= 0. By the second fundamental theorem, we have

(n + 2)T (r, g) = T (r, G∗)(3.32)

< N

(
r,

1
G∗

)
+ N

(
r,

1
G∗ + c

)
+ N(r, G∗) + S(r, g)

≤ N

(
r,

1
g

)
+ N

(
r,

1
g − n+2

n+1

)
+ N(r, g) + N

(
r,

1
f

)

+N

(
r,

1
f − n+2

n+1

)
+ S(r, f)

≤ 5T (r, f) + S(r, f),

which contradicts the assumption. Therefore F ∗ ≡ G∗, that is

(3.33) fn+1

(
f − n + 2

n + 1

)
= gn+1

(
g − n + 2

n + 1

)
.

Let h = f/g. If h ≡ 1, that is f ≡ g. If h 6≡ 1, we deduce that

(3.34) f =
(n + 2)h(1− hn+1)
(n + 1)(1− hn+2)

, g =
(n + 2)(1− hn+1)
(n + 1)(1− hn+2)

,

where h is a nonconstant meromorphic function. This completes the proof of The-
orem 1. �

Proof of Theorem 2. Let

(3.35) F =
fn(f − 1)2f ′

z
, G =

gn(g − 1)2g′

z

and

(3.36) F ∗ =
1

n + 3
fn+3 − 2

n + 2
fn+2 +

1
n + 1

fn+1

(3.37) G∗ =
1

n + 3
gn+3 − 2

n + 2
gn+2 +

1
n + 1

gn+1
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Thus we obtain F and G share 1 IM. Moreover by Lemma 1, we have

(3.38) T (r, F ∗) = (n + 3)T (r, f) + S(r, f), T (r, G∗) = (n + 3)T (r, g) + S(r, g).

Let H be defined as in Section 2. Suppose that H 6≡ 0. Proceeding as in the proof
of Theorem 1, we have

(3.39) T (r, F ∗) ≤ T (r, F ) + N

(
r,

1
F ∗

)
−N

(
r,

1
F

)
+ log r + S(r, f).

Note that

(3.40) N

(
r,

1
F ∗

)
= (n + 1)N

(
r,

1
f

)
+ N

(
r,

1
f − a1

)
+ N

(
r,

1
f − a2

)

where a1, a2 are distinct roots of the algebraic equation
1

n + 3
z2− 2

n + 2
z+

1
n + 1

=

0 and

(3.41) N

(
r,

1
F

)
= nN

(
r,

1
f

)
+ 2N

(
r,

1
f − 1

)
+ N

(
r,

1
f ′

)
.

Since F and G share 1 IM, by Lemma 2 we have

T (r, F ) + T (r, G)(3.42)

≤ 2(N2

(
r,

1
F

)
+ N2(r, F ) + N2

(
r,

1
G

)
+ N2(r, G)) + 3N

(
r,

1
F

)
+3N(r, F ) + 3N

(
r,

1
G

)
+ 3N(r, G) + S(r, F ) + S(r, G)

Obviously we have

N2(r, F ) + N2

(
r,

1
F

)
(3.43)

≤ 2N(r, f) + 2N

(
r,

1
f

)
+ 2N

(
r,

1
f − 1

)
+ N

(
r,

1
f ′

)
+ log r,

N2(r, G) + N2

(
r,

1
G

)
(3.44)

≤ 2N(r, g) + 2N

(
r,

1
g

)
+ 2N

(
r,

1
g − 1

)
+ N

(
r,

1
g′

)
+ log r.
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So we have

T (r, F ∗) + T (r, G∗)(3.45)

≤ T (r, F ) + T (r, G) + N

(
r,

1
F ∗

)
+ N

(
r,

1
G∗

)
−N

(
r,

1
F

)
−N

(
r,

1
G

)
+ 2 log r + S(r, f) + S(r, g)

≤ 2(N2

(
r,

1
F

)
+ N2(r, F ) + N2

(
r,

1
G

)
+ N2(r, G)) + 3N

(
r,

1
F

)
+3N(r, F ) + 3N

(
r,

1
G

)
+ 3N(r, G) + N

(
r,

1
F ∗

)
+ N

(
r,

1
G∗

)
−N

(
r,

1
F

)
−N

(
r,

1
G

)
+ 2 log r + S(r, f) + S(r, g).

From (3.43), (3.44), (3.45) we have

(3.46) (n− 27)T (r, f) + (n− 27)T (r, g) ≤ 6 log r + S(r, f) + S(r, g),

we obtain a contradiction. Therefore H ≡ 0. Note that

T (r, F ) + m

(
r,

1
f ′

)
= T (r, fn(f − 1)2f ′) + m

(
r,

1
f ′

)
(3.47)

≥ T (r, fn(f − 1)2)− log r.

From (3.21), (3.22), (3.47) we apply Lemma 6, we get F ≡ G or FG ≡ 1. We discuss
the following two cases.

Case 1: FG ≡ 1. In the same manner in the proof of Theorem 1, we again deduce
a contradiction.

Case 2: F ≡ G. Thus F ∗ ≡ G∗, that is

1
n + 3

fn+3 − 2
n + 2

fn+2 +
1

n + 1
fn+1(3.48)

=
1

n + 3
gn+3 − 2

n + 2
gn+2 +

1
n + 1

gn+1.

Set h = f/g, we substitute f = hg in the above, it follows that

(n + 2)(n + 1)g2(hn+3 − 1)− 2(n + 3)(n + 1)g(hn+2 − 1)(3.49)
+(n + 2)(n + 3)(hn+1 − 1) = 0.

If h is not a constant, using Lemma 3, we can conclude that

(3.50) {(n+1)(n+2)(hn+3−1)g−(n+3)(n+1)g(hn+2−1)}2 = −(n+3)(n+1)Q(h),
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where Q(h) = (h−1)4(h−β1)(h−β2) · · · (h−β2n), βj ∈ C−{0, 1}(j = 1, 2, · · · , 2n),
which are pairwise distinct. This implies that every zero of h− βj(j = 1, 2, · · · , 2n)
has a multiplicity of at least 2. By the second fundamental theorem we obtain that
n ≤ 2, which is again a contradiction. Therefore h is a constant. We have that
hn+1−1 = 0 and hn+2−1 = 0, which imply h = 1, and hence f ≡ g. This completes
the proof of Theorem 2. �

References

[1] A. Banerjee, Meromorphic functions sharing one value, Int. J. Math. Math. Sci.,
22(2005), 3587-3598.

[2] M. L. Fang and W. Hong, A unicity theorem for entire functions concerning differ-
ential polynimials, Indian J. pure appl. Math., 32(2001), 1343-1348.

[3] G. Frank and M. Reiders, A unique range set for meromorphic functions with 11
elements, Complex Variables Theory and Appl., 37(1998), 185-193.

[4] W. K. Hayman, Meromorphic Functions, Clarendon, Oxford, 1964.

[5] W. C. Lin and H. X. Yi, Uniqueness theorems for meromorphic functions concerning
fixed-points, Complex Variables Theory and Appl., 49(2004), 793-806.

[6] C. C. Yang, On deficiencies of differential polynomiaals, Math. Z., 125(1972), 107-
112.

[7] C. C. Yang and X. H. Hua, Uniqueness and value-sharing of meromorphic functions,
Ann. Acad. Sci. Fenn. Math., 22(1997), 395-406.

[8] H. X. Yi, Meromorphic functions that share one or two value, Complex Variables
Theory Appl., 28(1)(1995), 1-11.

[9] Q. C. Zhang, Meromorphic functions that shares one small function with its derivative,
J. Inequal. Pure Appl. Math., 6(116)(2005).


