DOI QR코드

DOI QR Code

Electromagnetic Interference Shielding Properties of CO2 Activated Carbon Black Filled Polymer Coating Materials

  • Hu, Quanli (Department of Chemical Engineering, Myongji University) ;
  • Kim, Myung-Soo (Department of Chemical Engineering, Myongji University)
  • Received : 2008.11.04
  • Accepted : 2008.12.08
  • Published : 2008.12.30

Abstract

Carbon blacks could be used as the filler for the electromagnetic interference (EMI) shielding. The poly vinyl alcohol (PVA) and polyvinylidene fluoride (PVDF) were used as the matrix for the carbon black fillers. Porous carbon blacks were prepared by $CO_2$ activation. The activation was performed by treating the carbon blacks in $CO_2$ to different degrees of burnoff. During the activation, the enlargement of pore diameters, and development of microporous and mesoporous structures were introduced in the carbon blacks, resulting in an increase of extremely large specific surface areas. The porosity of carbon blacks was an increasing function of the degree of burn-off. The surface area increased from $80\;m^2/g$ to $1142\;m^2/g$ and the total pore volume increased from $0.14073\;cc{\cdot}g^{-1}$ to $0.9343\;cc{\cdot}g^{-1}$. Also, the C=O functional group characterized by aldehydes, ketones, carboxylic acids and esters was enhanced during the activation process. The EMI shielding effectiveness (SE) of raw N330 carbon blacks filled with PVA was about 1 dB and those of the activated carbon blacks increased to the values between 6 and 9 dB. The EMI SE of raw N330 carbon blacks filled with PVDF was about 7 dB and the EMI SE increased to the range from 11 to 15 dB by the activation.

Keywords

References

  1. Luo, X. C.; Chung, D. D. L. Composites, Part B 1999, 30, 227. https://doi.org/10.1016/S1359-8368(98)00065-1
  2. Lee, B. O.; Woo, W. J.; Song, H. S.; Park, H. S.; Hahm, H. S.; Wu, J. P.; Kim, M. S. J. Ind. Eng. Chem. 2001, 7, 305.
  3. Yang, S.; Lozano, K.; Lomeli, A.; Foltz, H. D.; Jones, R. Composites, Part A 2005, 36, 691. https://doi.org/10.1016/j.compositesa.2004.07.009
  4. Wu, J. H.; Chung, D. D. L. Carbon 2002, 40, 445. https://doi.org/10.1016/S0008-6223(01)00133-6
  5. Chung, D. D. L. Carbon 2001, 39, 279. https://doi.org/10.1016/S0008-6223(00)00184-6
  6. Park, S. J.; Kim, K. D. Carbon 2001, 39, 1741. https://doi.org/10.1016/S0008-6223(00)00305-5
  7. Shigeno, Y.; Evans, J. W.; Yoh, I. ISIJ International 1997, 37, 733.
  8. Leboda, R.; Skubiszewska¸ Z.; Ba, J.; Bogillo,VI. Langmuir 1997, 13, 1211. https://doi.org/10.1021/la951564x
  9. Teng, H.; Wang, S. Carbon 2000, 38, 817. https://doi.org/10.1016/S0008-6223(99)00160-8
  10. Valente Nabais, J. M.; Nunes, P.; Carrott, P. J. M.; Ribeiro Carrotta, M. M. L.; Macias Garciab, A.; Diaz-Diezb, M. A. Fuel Processing Technology 2008, 89, 262. https://doi.org/10.1016/j.fuproc.2007.11.030
  11. Ao, G. Y.; Hu, Q. L.; Kim, M. S. Carbon Letter 2008, 9, 115. https://doi.org/10.5714/CL.2008.9.2.115
  12. Teng, H.; Ho, J. A.; Hsu, Y. F. Carbon 1997, 35, 275. https://doi.org/10.1016/S0008-6223(96)00137-6
  13. Navarro, M. V.; Seaton, N. A.; Mastral, A. M.; Murillo, R.; Carbon 2006, 44, 2281. https://doi.org/10.1016/j.carbon.2006.02.029
  14. Park, S. J.; Kim, J. S.; J. Col. Inter. Sci. 2000, 232, 311. https://doi.org/10.1006/jcis.2000.7160
  15. Pantea, D.; Darmstadt, H.; Kaliaguine, S.; Roy, C. Applied Surface Science 2003, 217, 181. https://doi.org/10.1016/S0169-4332(03)00550-6
  16. Probst, N.; Grivei, E. Carbon 2002, 40, 201. https://doi.org/10.1016/S0008-6223(01)00174-9
  17. Taylor, R. "Introduction to carbon technologies", ed. Marsh, H.; Heintz, E. A.; Rodriguez-Reinoso, F., University of Alicante, Spain, 1993, 185.
  18. Frhlich, J.; Niedermeier, W.; Luginsland, H. D. Composites: Part A 2005, 36, 449. https://doi.org/10.1016/j.compositesa.2004.10.004

Cited by

  1. Electromagnetic interference shielding boards produced using Tetra Paks waste and iron fiber vol.17, pp.2, 2015, https://doi.org/10.1007/s10163-014-0255-9
  2. Effect of Fluorination of Carbon Nanotubes on Physico-chemical and EMI Shielding Properties of Polymer Composites vol.39, pp.1, 2015, https://doi.org/10.7317/pk.2015.39.1.114
  3. The effect of needle-punched nonwoven fabric thickness on electromagnetic shielding effectiveness vol.85, pp.8, 2015, https://doi.org/10.1177/0040517514555794
  4. Scalable Fabrication of Natural-Fiber Reinforced Composites with Electromagnetic Interference Shielding Properties by Incorporating Powdered Activated Carbon vol.9, pp.1, 2015, https://doi.org/10.3390/ma9010010
  5. hybrid and MWCNTs on enhancing broadband electromagnetic interference shielding performance vol.8, pp.4, 2018, https://doi.org/10.1039/C7RA12909B