Estimation of the Central Aortic Pulse using Transfer Function and Improvement of an Augmentation Point Detection Algorithm

전달함수를 이용한 대동맥 맥파 추정 및 증강점 검출 알고리즘 개선에 관한 연구

  • Im, Jae-Joong (Chonbuk National University, Electronics & Information Eng.)
  • 임재중 (전북대학교 전자정보공학부)
  • Published : 2008.05.25

Abstract

Aortic AIx(augmentation index) has been used to measure aortic stiffness quantitatively and even to evaluate ventricular load. However, in order to calculate aortic AIx catheters should be inserted to the subjects' artery, which hampers its clinical usage. To overcome such limitation, aortic AIx has been indirectly calculated by estimating aortic pressure wave from the peripheral arterial pulse by applying transfer functions. In this study, central aortic pressure waves using Millar catheter and radial artery pulse waves using tonometry pressure sensor were measured to establish transfer functions for an estimation of central aortic pressure waves from radial artery pulse waves. Also, an algorithm which detects augmentation point for the calculation of AIx were developed. Developed algorithm for the detection of augmentation point gradually increases the differential order to detect inflection point rather than detects the distinctive point that appears after a specific time. Transfer functions were established using 10th order ARX model and were verified for the stability of the transfer function through residual analysis. Evaluation of an algorithm for the detection of augmentation point were performed by comparing the augmentation points obtained from developed algorithm with the known augmentation points synthesized in various conditions. In addition, developed algorithm for the AIx is proved to provide more accurate results than the ones developed by previous studies. The significance of the study was in two folds. Firstly, the results could provide the basis for the measurement of aortic stiffness using easily-measurable radial artery pulse waves, and secondly, extension of the study may enable the early diagnosis of various vascular diseases.

대동맥 증강지수는 심실의 부하뿐만 아니라 대동맥의 탄력성을 직접적으로 나타낼 수 있는 장점 때문에 동맥의 경직도를 평가하는 지표로 주목받고 있다. 하지만, 정확한 대동맥 증강지수를 계산하기 위해서는 직접 카테터를 피험자에 삽입하여 측정해야 하기 때문에 임상에 적용하기에는 한계가 존재한다. 이러한 문제점 때문에 전달함수를 이용하여 요골 동맥 맥파로부터 대동맥 맥파를 간접적으로 추정하는 방법이 이용되고 있다. 본 논문에서는 전달함수를 구하기 위하여 Millar 카테터를 이용한대동맥 맥파와 토노메트릭 방식의 압력센서를 이용하여 요골동맥 맥파를 측정하였다. 또한, 기존의 증강점 검출 알고리즘 대신단계적으로 미분 차수를 증가시키면서 증강점을 검출하는 새로운 알고리즘을 제안하였다. 10차 ARX 모델을 이용하여 전달함수를 구현하였으며, 잔차 분석을 통하여 모델을 검증하였다. 증강점 검출 알고리즘 검증을 위하여 네 가지 종류의 합성파를 만들어 제안된 알고리즘이 기존 알고리즘 보다 더 정확한 결과를 나타내는 것을 확인할 수 있었다. 본 연구는 쉽게 측정할 수 있는 요골동맥 맥파를 이용하여 대동맥의 경직도를 평가할 수 있는 방법을 제시하였으며 이를 통하여 다양한 심혈관 질환의 조기 진단에 기여할 수 있을 것이다.

Keywords

References

  1. A. P. Avolio, S. G. Chen, R. P. Wang, C. L. Zhang, M. F. Li and M. F. O'Rourke, "Effects of aging on changing arterial compliance and left ventricular load in a northern Chinese urban community", Circulation, Vol. 68, pp. 50-58, July 1983 https://doi.org/10.1161/01.CIR.68.1.50
  2. J. M. Arnold, G. E. Marchiori, J. R. Imrie, G. L. Burton, P. W. Pflugfelder, and W. J. Kostuk, "Large artery function in patients with chronic heart failure", Circulation, Vol. 84, pp. 2418-2425, December 1991 https://doi.org/10.1161/01.CIR.84.6.2418
  3. A. C. Dortimer, P. N. Shenoy, R. A. Shiroff, D. M. Leaman, J. D. Babb, A. J. Liedtke and R. Zelis, "Diffuse coronary artery disease in diabetic patients; fact or fiction?", Circulation, Vol. 57, pp. 133-136, January 1978 https://doi.org/10.1161/01.CIR.57.1.133
  4. D. K. Arnett, G. W. Evand and W. A. Riely, "Arterial stiffness: a new cardiovascular risk factor?", American Journal of Epidemiology, Vol. 140, pp. 669-682, October 1994 https://doi.org/10.1093/oxfordjournals.aje.a117315
  5. B. Gribbin, T. G. Pickering and P. Sleight, "Arterial distensibility in normal and hypertensive man", Clinical Science, Vol. 56, pp. 413-417, May 1979 https://doi.org/10.1042/cs0560413
  6. M. E. Safar and E. D. Frohlich, "The areterial system in hypertension: a prospective view", Hypertension, Vol. 26, pp. 10-14, July 1995 https://doi.org/10.1161/01.HYP.26.1.10
  7. R. J. Woodman, B. A. Kingwell, L. J. Beilin, S. E. Hamilton, AM. Dart and GF. Watts, "Assessment of central and peripheral arterial stiffness", American Journal of Hypertension, Vol. 18, pp. 249-260, February 2005 https://doi.org/10.1016/j.amjhyper.2004.08.038
  8. P. B. Adamson, A. Magalski, F. Braunschweig, M. Bohm, D. Reynolds, D. Steinhaus, A. Luby, C. Linde, L. Ryden, B. Cremers, T. Takle and T. Bennett, "Ongoing right ventricular hemodynamics in heart failure: clinical value of measurements derived from an implantable monitoring system", Journal of the American College of Cardiology, Vol. 41, pp. 565-571, February 2003 https://doi.org/10.1016/S0735-1097(02)02896-6
  9. M. F. O'Rourke, A. Pauca and X. J. Jiang, "Pulse wave analysis", British Journal of Clinical Pharmacology, Vol. 51, pp. 507-522, June 2001 https://doi.org/10.1046/j.0306-5251.2001.01400.x
  10. T. Weber, J. Auer, M. F. O'Rourke, E. Kvas, E. Lassnig, R. Berent and B. Eber, "Arterial stiffness, wave reflection, and the risk of coronary artery disease", Circulation, Vol. 109, pp. 184-189, January 20 2004 https://doi.org/10.1161/01.CIR.0000105767.94169.E3
  11. W. W. Nichols and M. F. O'Rourke, McDonald's blood flow in arteries: theoretical, experimental and clinical principles, Hodder Arnold, pp. 466-472, 2005
  12. Y. C. Chiu, P. W. Arand, S. G. Shroff, T. Feldman and J. D. Carroll, "Determination of pulse wave velocities with computerized algorithms", American Heart Journal, Vol. 121, pp. 1460-1470, May 1991 https://doi.org/10.1016/0002-8703(91)90153-9
  13. H. N. Sabbah and P. D. Stein, "Investigation of the theory and mechanism of the origin of the second heart sound", Circulation Research, Vol. 39, pp. 874-882, December 1976 https://doi.org/10.1161/01.RES.39.6.874
  14. D. Chen, P. Pibarot, G. Honos, and L. G. Durand, "Estimation of pulmonary artery pressure by spectral analysis of the second heart sound", The American Journal of Cardiology, Vol. 78, pp. 785-789, October 1996 https://doi.org/10.1016/S0002-9149(96)00422-5
  15. T. S. Manning, B. E. SHykoff and J. L. Izzo, "Validity and Reliabiliry of Diastolic Pulse Contour Analysis (Windkessel Model) in Humans", Hypertension, Vol. 39, pp. 963-968, May 2002 https://doi.org/10.1161/01.HYP.0000016920.96457.7C
  16. B. M. Pannier, M. E. Safar, S. Laurent, and G. M. London, "Indirect, noninvasive evaluation of pressure wave transmission in essential hypertension", Angiology, Vol. 40, pp. 29-35, January 1989 https://doi.org/10.1177/000331978904000106
  17. R. Kelly, J. Daley, A. Avolio and M. F. O'Rourke, "Arterial dilation and reduced wave reflection", Hypertension, Vol. 14, pp. 14-21, July 1989 https://doi.org/10.1161/01.HYP.14.1.14
  18. J. P. Murgo, N. Westerhof, J. P. Giolma and S. A. Altobelli, "Effects of exercise on aortic input impedance and pressure wave forms in normal humans", Circulation Research, Vol. 48, pp. 334-343, March 1981 https://doi.org/10.1161/01.RES.48.3.334
  19. C. H. Chen, E. Nevo, B. Fetics, P. H. Park, C. P. Yin, W. L. Maughan and D. A. Kass, "Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure", Circulation, Vol. 95, pp. 1827-1836, April 1 1997 https://doi.org/10.1161/01.CIR.95.7.1827
  20. B. Fetics, E. Nevo, C. H. Chen and D. A. Kas, "Parametric model derivation of transfer function for noninvasive estimation of aortic pressure by radial tonometry", IEEE Transactions on Biomedical Engineering, Vol. 46, pp. 698-706, June 1999 https://doi.org/10.1109/10.764946