o

HO

(Reader Level Filtering for Query Processing in an RF

20084 63 MXIs ==X M 45 M CIH H 3 =

2008—-45C1-3-14

RFID vEdofoll s Ao} AelE 43 2y &A o

RS EOEE", F $ A § % 8"

(Muhammad Ashad Kabir, Wooseok Ryu, and Bonghee Hong)

ok

o
4L /|

e

—_—

RFID #7494 nEdols $82209 doo) ueh Puizye #Uglel EoloE B dold 2238 oFan 5
ok 4TS SR olm, B dolHrt B252 nEddole Hasl bR webd B =BoA visqele) ¥
Zol7] A3 wln @A o3t J]RS AT WA P Me oFr)se FAsE 4T aAAN A2l Aos
Selololn AT Aojsh Aol AT Bole ERIY Td $Loq ABHE LTS PN FBY A9SS
Q Aoz WFse] el WBHE W99 £2 FaNNeRA, dreRy A49E U dolH £8 Hanu ¥
BN Ate 99 AL Etiz RFID WSAolE 47 FEstgon, Ak de) Aol nsdoids Az A
il A DlBglolz A5HE dold EAUe gansE A2 4¥S B YFdAn

=
=

Yo orE o 5 ok

Abstract

In RFID system, Middleware collects and filters streaming data gathered continuously from readers to process
applications requests. The enormous amount of data makes middleware in highly overloaded. Hence, we propose reader
level filtering in order to reduce overall middleware load. In this paper, we consider reader filtering capability and define
query plan to minimize number of queries for processing into middleware and reader level. We design and implement
middleware system based on proposed query plan. We perform several experiments on implemented system. Our
experiments show that the proposed query plan considerably improves the performance of middleware by diminishing

) Middleware)

113

processing time and network traffic between reader and middleware.

Keywords : Reader Level Filtering, Query Processing, User Memory, RFID Tag, Middleware

I. Introduction

Radio Frequency Identification (RFID) is a newly
emerging wireless technology that uses radio waves
to 1dentify individual tagged objects without line of
sight or contact between readers and tagged objects.
RFID system has recently begun to find greater use

ebgEl g, T A4S, BAURE A%E T
(Department of Computer Engineering, Pusan
National University)

% “This work was supported by the Korea Research

Foundation Grant funded by the Korean
Government (MOEHRD)” (The Regional Research
Universities Program/Research Center for

Logistics Information Technology).
HadA 200834426, A5 Y 2008d546Y

(253)

range of applications including industrial

automation, supply chain managementm, aircraft

n

maintenance, baggage handling, patient safety in
(3]

?

foodstuffs traceability, etc. Nowadays tags contain
additional memory (called “User memory”) which

hOSpital[Z], monitoring in production ‘management

used to store application specific information. Data
stored on user memory can be define as non-EPC
data, where Electronic Product Code (EPC) is an
1dentification universally identifying
physical objects, defined by EPCglobal[4]. According
to survey by EPCglobal Tag Data Joint Research
Group, 79% industries need to write data on user

(4}
memory .

scheme for

114

In RFID system, data are stream that are
generated rapidly and automatically” ®, Middleware
receives data from the readers connected to it. The
data volume depends on the number of connected
readers and the number of tags on the reader
mterrogation zone. Middleware should process the
high volume data streams for real-time applications.
Hence middleware 1s often in highly overloaded for
enormous data.

To propose
reader—level-filtenng. Different makes and models of

reduce middleware load we
readers vary widely in the functionality they provide,
from “dumb” readers that do little more than report
what tags are currently within the reader’'s RF field,
to “smart” readers that provide sophisticated filtering,
smoothing, reporting, and other functionality. Reader
Protocol (RP)'" which is a standard interface between
reader and middleware provides a uniform way for
middleware to access and control the conforming
readers manufactured by variety of vendors as well
as functionality of reader level filtering.

One simple approach of reader level filtering is
delegating all filtering conditions to reader. Obviously,
it makes middleware an idle and reader in heavy
load. Hence, we propose a smart query plan that will
split filtering conditions to process in middleware and
reader level.

In this paper, we point out the necessity of reader
level filtering from the application and middleware
perspective. After that we have analyzed data format
and query patterns, and propose a smart query plan
and overall middleware architecture with experimental
evaluation.

The paper 1s organized as follows: In section II,
we discuss the related work. Section II outlines the
REID system with related standards and defines the
problem with significance of reader-level-filtering. In
section IV, we have analyzed query, proposed query
conversion policy and query extraction policy with
example. We illustrate query processing module and
of

evaluation in section V. The paper concludes with a

present experimental results performance

summary of contribution in section VI

RFID DIEHOI0IM EO X2l AT ele TA 61}

(254)

7 23H0EOIAIE 2|

[I. Related Work

Several approaches to reduce middleware load have
been proposed. Load balancing can be based on
workload variation of RFID middlewares according to

) The proposed

the location of connected readers®
approach considers workload vanation of RFID
middlewares according to the location of the
connected readers. It focuses on job transfer policy,
and destination policy. In that
should be

disconnected from the source middleware and then

selection policy,
approach a set of chosen readers

reconnected to the target middleware during reader
reallocation. It surely incurs the cost of disconnection
and reconnection, and there is a possibility of losing

tags information collected by the readers. Although it

tries to minimize reader relocation overhead, it does

not ensure the accuracy of tag information or recover
of losing tag information. The problem of this
approach is that it does not ensure reliability of tag
information.

Connection pool based load balancing method for
RFID middleware has been proposed in [9]. The
Connection Pool distributes the tag data to connected
several middleware by CPM Pool
Manager). Tag data are distributed to middleware
that has low load relatively among connected several

(Connection

middleware. Normally, the query define in middleware
by application is continuous query, issued once and
then logically run continuously over the RFID stream
data. So, each query contamns duration and repeat
period. Moreover, it is defined for some specific
readers. Hence, during the specific time duration, the
middleware should collect tag data from the specific
readers. The proposed method in that paper does not
consider this constraint.

Middleware load can be reduced by delegating
some filter conditions to reader. This concept is
similar to query dissemunation n sensor network[w],
where the system disseminate query into the
network. But there are some significant differences
between sensor network and RFID system. In sensor

network, communication is basically wireless, nodes

20084 53 ®X}

Ok

are fixed or mobile with limited power capacity and
each node 1s responsible to communicate with its
child node, collect and aggregate data and send to its
parent node. Unlike sensor node, RFID reader has no
power limitation, and communication with middleware

1S generally wire communication.

II. Problem Definition

In this section, we describe the basic components
of RFID system with related standards. Here, we also

define the problem by analyzing two application
scenarios.

1. Target Environment

RFID systems have been around for decades and
comprise of three main components: the RFID tag, or
transponder, which 1s located on the object to be
identified and is the data carrier in the RFID system;
the RFID reader, or transceiver, which may be able
to both read data from and write data to a
transponder; the data processing subsystem often
referred to as RFID middleware that is application—
agnostic, manages readers, filters and aggregates data
obtained from the transceiver and delivers these to
the appropriate consumers.

Efforts standardize the system
components for RFID were mitiated by the AutolD
center, an industry sponsored research program. This
work has matured with the creation of the EPC
Network standard, was designed to enable all objects

to various

Client Application

!

ALE Interface

RFID Middleware

RP- Reader Pratecd
Standard

RP RP

Readers

Reader Reader

Tags

g 1.
Fig. 1.

RFID AlAH I
Overview of RFID System.

o5 =2X KM 45U CIEHA3S

(255)

115

in the world to be linked wvia the intemnet,
admirﬁstered by the EPCglobal orgarlization[4]. The
standards specify not only the tags and readers, but
define methods, interface and protocols for data
processing and connectivity to IT infrastructure.
Figure 1 shows the basic components of RFID
system with related standards.

Middleware Standard: The EPC Network
Architecture defines Application Level Events (ALE)
UL a5 a standard interface through which clients may
obtain filtered and consolidated data from various
sources. The processing done at ALE typically
involves: (1) receiving data from one or more sources
such as readers; (2) accumulating data over intervals
of time, filtering to eliminate duplicate data and that
are not of interest, and counting and grouping data to
reduce the volume; and (3) reporting in various
forms.

Middleware to Reader Interface Standard: Reader
Protocol (RP) defines standard interface by which
readers interact with EPCglobal compliant software
such as middleware. A goal of the RP 1s to msulate
the upper layer (middleware) from knowing the

details of how reader and tags interact.

2. Problem Definition
In RFID environment, applications want some
specific data from tag memory which fulfill filter
conditions defined by them. Checking filter conditions
can be treat as query processing. To process query
over user memory, we consider reader-level-filtering
and reader—specific—data collection.

Let us assume that a pallet contains products and
is passing through two interrogation zones, for
example, dock_door#l and dock_door#2, as shown In
figure 2, and application interest only data from
dock_door#2.

belonging to dock door#l are redundant. Reader-

Hence, data collected from readers

specific data collection can reduce those redundant
data and finally diminish middleware load. Note that
ALE defines the concept of logical reader (e
dock_door#l, dock_door#2), for hiding from clients the
details of exactly what physical devices were used to

116 RFID O|S9OIMA Zol Xe|E fiet 2l TA K

[Middleware]

 dock_door#2

Reader

a8 2. RFID 2|HE& &3 HolE| %
Fig. 2. Reader-specific data collection.

[pe

a7l 3. 2| ctA ofzf
Fig. 3. Reader-level filtering.

gather data relevant to a particular logical location.

Let us consider another scenario, a pallet contains
several types of products and 1s passing through an
interrogation zone, as shown m figure 3, and
application needs some specific product information.
In this case, data related to other products is not
meaningful to application. If we use reader only for
data collection purpose then middleware should
process huge amount of redundant data which
drastically affect middleware performance. To solve
this problem we should consider reader (filtering
capability and delegate some filtering conditions for
reader level processing.

Moreover, in a certain time, middleware may
contain several queries from various clients. There is
high possibility to exist some queries with overlap
filter condition and common reader specification. If
middleware delegate that condition separately to
reader, after each read cycle middleware will receive
huge amount of duphlicate data. Also it requires more
TagSelectors for reader, which will increase reader

load and decrease performance. However, delegating

T FSHAEOAE 2|

all filtering conditions to reader makes middleware in
idle and reader in heavy load. Hence, we need an
query extraction policy (called query plan) which will
select appropriate query patterns for reader level

processing.
IV. Reader Level Filtering

1. Query Analysis

ALE proposed a standard query interface for RFID
applications. The interface specifies ECSpec (Event
Cycle Specification) as a query for middleware, which
executes during a given time. It has predicates,
composed of filtering conditions regarding readers
and tags. The condition related to tags mght be
non-EPC patterns that represents set of ranges or
ranges and fixed values.

Table 1 shows the data type, format, and
corresponding filter patterns for non-EPC data
according to ALE specification. Hex is a valid data
format and *, [lo-hi/, fixValue, and &mask=value are
valid patterns for non-EPC data. If a pattemn 1s single
hex value (“fixValue”), the pattern matches a value
equal to the pattern. If a pattern is in the form

AL

= 1. d| EPC d|o|&{off Cf et ofz} A=
Table 1. Filter specification for non—EPC data.

*, [lo-hi], fixV alue,
uint &mask=value

hex

decimal * [lo—hi], fixValue
<logicalReaders>
<logicalReader> dock door#l </logicalReader>
</logicalReaders>
<filterSpec>

<filter>
<includeExclude>INCLUDE</includeExclude>
<fieldspec><fieldname>afi</fieldname></fieldspec>
<patList><pat>xCl</pat><pat>&xFO=x20</pat></patlist>
</filter>
<filter>
<includeExclude>INCLUDE</includeExclude>
<fieldspec><fieldname>countryOfOrigin</fieldname></fieldspec>
<patList><pat>*</pat></patlist>
</filter>
<filter>
<includeExclude>BERCLUDE</includeExclude>
<fieldspec><fieldname>lotCode</fieldname></fieldspec>
<patList><pat>[x9-xB]</pat></patList>
</filter>
</filterSpec>

% 4. H| EPC Hlo|He| o=tE #{et ECSpec Ol H|
Fig. 4. Example of application level filtering conditions
for non-EPC data.

20084 58 H*}

Ok

[lo-hi], the pattern matches any value between lo
and hi, inclusive. If a pattern 1s in the form
&mask=value, the pattern matches any value that is
equal to value after being bitwise and-ed with mask.
Figure 4 shows an example of filtering conditions for
non—-EPC data.

An ECSpec comprise of ECFilterSpec and a hist of
logical reader names. ECFilterSpec is a set of filter
condition. Each logical reader represents one or more
physical reader. For reader-specific data collection we
should delegate filtering conditions to some specific
physical readers defined by ECSpec, not all physical
readers connected to middleware. Each filter condition
of ECSpec of three
includeExclude, fieldSpec and patList as shown 1n
figure 4. The fieldspec specifies which field of the
tag 1s considered in evaluating this filter, and the
format for patterns in the patList.

Table 2 (called pattern combination table) shows
the all possible combinations of patterns in a pattern
list. The value of the includeExclude is INCLUDE or
EXCLUDE. If value is INCLUDE, a tag is considered
to pass the filter if the value in the specified field
matches any of the patterns 1n patlList. If this
parameter 1s EXCLUDE, a tag i1s considered to pass
the filter if the value in the specified field doesn't
match any of the pattems in patlist. The patlist
specifies the patterns agamst which the value of the
specified tag field is to be compared. Each member of
this list 1s a pattern value conforming to the format

comprise parameters.

implhed by fieldSpec. Example in figure 4 specifies

¥

2. Jl=tt e el =5

Table 2. Al possible pattern combinations in a pattern
list.

L 0 X | X 0.
2 0 X | 0 0
3 X X X 0
4 X X 0 0
5 0 X X X
6 0 X 0 X
7__ —_x __—E_ = ‘ - .
8 X 0 X | X

ote| =X A 45 H CIH A 3 =

(257)

117

filter conditions using three field—names. We assume
that the field—size of dfi, countryOfOrigin and lotCode
are 8 & and 4 bits respectively and hex 1s their
default data format.

The Reader-layer of RP describes the features of
reader in terms of a conceptual pipeline processing,
which comprise of four subsystems. Read-subsystem
is one of them. It has read filtering stage, which
maintains a list of filtering patterns configured by the
middleware (defined in terms of TagSelector objects),
and uses those patterns to filter out tags of no |
interest. The purpose of the filtering stage 1s to
reduce the volume of data by only including tags of
interest to the client.

A TagSelector encapsulates the logic in a reader
that eliminates tags from being reported according to
the the
parameters. This filtering logic 1s simple schema
A TagSelector
specified by using two hexadecimal strings, a filter
value and a filter mask. In the filter mask M, all hit
positions where the value 1s important for the
filtering should be set to 1. A specific field of tag
matches the filter if and only if the result of applying

conditions specified by TagSelector

based on bit-wise patterns. 1S

the filter mask on the filter value using a bit-wise
AND operation is the same as when applying the
filter mask on the tag field. This can define as

follows:

IF ({ Vbitand M == (F bitand A) THEN
FieldMatchesTheFilter()

For example,

Filter mask M = 1Cy (00011100 in binary, meaning we are only interested in the
bit values at positions 4, 5, and 6)
Filter value V= 10, (00010000 in binary. Because of the setting of M, only the

values ofbit positions 4-6 are important. Therefore in this case afilter value of
“F3,” /11110011 would have the same result)

Actual tag field data F = 554 (01010101 in binary)

In this case:

V bitand M = 104 bitand 1Cy = 00010000 bitand 00011100 = 00010000 = 104
F bitand M = 554 bitand 1Cy = 01010101 bitand 00011100 = 00010100 = 144
The two values are different, so there is no match.

In to

addition this filtering definition, a
TagSelector a TagField object. The
TagField defines the tag data for which the

TagSelector applies (.e., the

contains

TagField specifies

118 RFID DIEANOAM Ze X2 E fe 2l A ox

where to find the data field on the tag that should be
processed by the filter). Multiple TagSelector objects
can be associated with any given reader. Each of
those filter objects 1s specified to be either inclusive
(meaning that only tags matching the filter should be
reported) or exclusive (meaning that tag should be
only reported in 1t does not match the filter). In case
of multiple TagSelectors are used, a tag should be
reported if the following two conditions hold:

» The tag matches at least one of the inchisive
patterns; and

» The tag does not match any of the exclusive
patterns

As a special case, if zero inclusive patterns are
defined, the first check should be omitted.

2. Query Conversion Policy

In previous section, we have described all possible
patterns of non-EPC data for hex format with an
example (figure 4) and also reader level filtering
to RP
standard. In this section, we describe how to map

format (TagSelector object) according
those patterns to reader level filtering format.
Reader level filtering format (TagSelector) consists
of Field-name, value, mask and inclusiveflag. It
requires one TagSelector for each pattern in pattern
list in the form of fixValue, *, or &M=V. For

fixValue, value field of TuagSelector is fixValue and

~ Fiddname | Pattem list | includeExclude
: afl Ct, &F0=20 ; I
country OfOrigin * |

lotCode [9-B] E

TagSelectar# Tagseletord® Toy S ectords §
‘fieldname: lotCode |{fieldname: lotCode |Hieldname: lotCode |}
swvalue: 9 value; A value: B !
pmask: T asle: T ‘pmaclk: F '
;Enclgsiueﬂag:false inclusivellag: falselld l_gsivel‘lag:_fg_l_seﬁ

fieldname: country0fOrigin
alu=: 00
ack: 00
inclusiveFlag: true

§ TagSelectori

Tag Selector#

fiecl dname: afi
oo M® hralus: CL wvalue: 20
i ask: FF mask: FO
! linclusiveFlag: trueliinclusiveFlag: true |

fisldname: afi

R R S b

% 5 o|E90o EooA gl 2lejze| B3 of x|
Fig. 5. Mapping example of filter condition {middleware
fo reader leve)).

1D OFEOIAE. 9

mask is sequence of ‘F’. Here, number of 'F’ equals
ceil(field-size/4). For *, both mask and value are ().
For &M=V, mask equals M and value equals V.
But to map range pattern, it requires more
TagSelector object. Simple technique is to define one
TagSelector for each value within range. Hence, no.
of TagSelector equals (hi-lo+1) for range [hi-lo].
of mapping
application-level filtering conditions (figure 4) to

Figure 5 shows an example
reader-level filtering format. For example, one of the
filter-patterns of afi field is Clg. As we mentioned
before, the afi field-size is 8 bits and data format is
hex. So, the mask and value of TagSelector object
should be FFy and Clyg respectively. In case of
fixValue, * and &mask=value format, 1t 1s easy to
map and need only one TagSelector for each pattern.
But in case of range pattern, it 1s needed more than
one TagSelector and the number of 7TagSelector
depends on the range. If the field size is large and
the corresponding range pattern cover large space
then the number of TuagSelector will increase
dramatically. Also the large number of TagSelector
should be burden for reader. Hence, we define query
splitting policy to balance the load between reader

and middleware.

3. Query Extraction Policy

For queries with overlap filter condition, we
propose splitting and merging techniques. Each filter
condition specifies either an inclusive or exclustve
test based on the value of includeExclude. 1f the
includeExclude parameter of a common field name 1s
INCLLUDE, merging technique computes the pattern
list which cover all patterns specified by each
member in the common field name list. Instead of
delegate query conditions separately, middleware
delegates one query condition with merging pattern
list. In the same way, splitting technique computes
intersection of all patterns specified by each member
in the common field name list with includeExclude
EXCLUDE.
conditions separately, middleware delegates one query

equals Instead of delegate query

condition with splitting pattern list.

20081 58 MASeE ==X H 45 @ Cl # X 3

Algorithm QuerySplitting (Query Q)
/* Split filtercondition for middleware and reader level processing */

Given: pattern-combination-table (Table 2)
Input: 0= {fc,, fc, fc;, ..} aset of filter-condition define by application

1. for each filter-conditionf, in Q
2. if (includeExclude(f;) = INCLUDE)

if (pattern combination of pattern-list(f.) is one of the
types 5-8 in pattern-combination-table)

Consider £ for reader level processing
else

4
5
6. Consider f; for middleware level processing
7
8

had

elseif (includeExclude(f,) = EXCLUDE)
: for each pattern p in pattern-list (f.)
9. if (pattern-type(p) is Range)
Consider p for middleware level processing
else

Consider p for reader level processing
13. end for
14. end for
a8 6. Hel 2E ¢ug|F

Fig. 6. Splitting algorithm.

Fof queries with no overlap filter conditions, we
propose query split algorithm as shown in figure 6.
The key concept of the algorithm 1s as follows:

Query for tags can be classified into two types
according to the value of query predicate include-
Exclude. The possible value of includeExclude is
INCLUDE or EXCLUDE. The significance of those
values In query processing have already discussed in
previous section.

For INCLUDE, to pass filter condition a tag should
satisfy at least one of the filter patterns in pattern
list. That is, there is logical OR relationships among
patterns. Hence, in this case, 1t 1s not possible to split
patterns and process in middleware and reader level.
However, it requires more 7TagSelector for range
pattern than others. Hence, our basic approach is that
pattern list with absence of range pattern is
processed by reader. So, pattern list with pattern
combination no. 5 to 8 (Table 2) are processed by

reader

and middleware

processes remaining

combinations.

For EXCLUDE, to pass filtering condition a tag
should satisfy all filter patterns in pattern list. That
1s, there 1s logical AND relationships among patterns.
Hence, 1t 1s possible to split patterns and process in
middleware & reader level. Our basic approach is
that pattern in the form of fixValue, *, or &M=V are
processed in reader level and Range pattem is

(259)

2

119

2 3 ZHeof 2= oA

Table 3. Query Splitting example.

Query Predicates Processing
Field name Pattem list | IncludeExclude level
afi C1, &F0=20 | Reader
countryOfOrigin * i Reader
lotCode [S-B] E Middleware

processed in middleware level.
Table 3 illustrates the query plan according to
splitting algorithm for example in figure 4.

V. Design and implementation
1. System Design

This an RFID muddleware

architecture that addresses query processing over

section presents

user memory considering reader level filtering. Figure
7 shows the middleware architecture.

Our proposed middleware comprises of modules,
where each module provides different functionality of
middleware. Event cycle controller controls start and
stop point of event cycle according to boundary
condition specified by ECSpec. Reports synthesizer
collects filtered data and makes ECReports. Reader
Manager stores and manages physical reader, base
reader & logical reader information. Query Manager
stores user define query specification, separates query
conditions and deliver each condition to related
modules.

Query Extractor splits filtering conditions for

reader-level and middleware-level execution. Query

Query Executor

Data Stream
Receiver

Middleware to Reader Interface

TCP{IP

aE

7. RFID o|E0f o}7|& X
Fig. 7. RFID Middieware Architecture.

120

Executor executes middleware-level filter-conditions

Query
Converter converts middleware—level filter-condition

and sends result to Reports Synthesizer.

to reader—level filter pattern. Event Synthesizer
converts reader protocol based event to tag event.
Middleware to Reader Interface communicates with
reader, sends filter condition to reader, receives
filtered tag events, and sends to appropriate module,
Data Stream Receiver collects tag events, transforms

to executable format and sends to Query Executor.

2. Experimental Evaluation

There are no well-known and widely accepted data
sets for experimental purpose. Therefore, we carried
out experiments using uniformly distributed data sets,
generated by the Tag Data Generator (TDG). Tag
data sets are randomly generated unbiased data in
the space and consist of 10K entries. We generated
The QG
generates filter condition based on the data model of
ECSpec.

To reflect the real RFID environment, the QG

allows the user to configure its specific variables

queries using Query Generator (QGQG).

such as field—size, number of patterns in pattern list,
number of filter conditions in an ECSpec, maximum
number of readers in a reader specification. We have
generated several unbiased QG filter-condition sets
for experiments and consist of 100, 500, 1K, 5K, and
10K entries. All data are kept in the main memory to
support real-time processing. The time we measured
the wall

measurements were made on a standard personal

was clock time. Our performance

Middleware Performance
' mOnIyMW Level Processing T i
. mMW and Readsr Level Processing |

140000 -
120000 |

100000

CPU Time {ms)}

1000
Number of Filter-Condition

10000

% 8 o|SHole] sAIZE "ot
Fig. 8. Middieware performance evaluation.

RFID BISHAO0AM 22| X2l et 2l oA ot

(260)

7L FSIOIEOMAE <

Network Traffic Measurement

Lm Only MW Level Processing mMW and Reader Lewst Processing

18000

18000

-
I
o

@ 12000 |

¥ 8OO0

§ e

]

i ’ 1000 5000 10000 50000 1060000
Number of Tag Data
a2l 9 2ifet n|EHZt Hole SAIEF vl
Fig. 9. Middleware to Reader network traffic.

Pentium IV 26 GHz

processor, 1 GB of main memory and the Microsoft

computer with an Intel

Windows XP operating system.

The performance of middleware 1s measured by the
CPU time required to process queries. Figure 8
shows the CPU time to process 100, 500, 1K, bK, and
10K query sets for randomly generated 10K tags.
Each query sets are processed over 5 times randomly
generated 10K tags.
processing times. Experimental result shows that for

We consider average of 5

several filter-conditions Middleware level processing
requires more CPU time than combine processing
(Middleware and Reader level processing).

We also carried out experiments of middleware
load. The middleware load 1s measured by the
network traffic between middleware and readers.
Figure 9 shows the network traffic results from 1K,
5K, 10K, 50K, and 100K tag data sets for randomly
generated 100 filter-conditions. We assume that each
tag memory size is 272 bits (e.g. Alien Tag) and
reader sends 96 bits EPC and 64 bits user memory
data, 1.e. total 160 bits to muddleware. The result of
experiment shows that reader level filtering able to
reduce network traffic compare to muddleware level

processing.

VI. Conclusion

In this paper, we introduce the concept of reader
level filtering for reduce middleware load. Our
approach of data filtering is essential to provide

correct RFID data by considering muddleware load

2008 53 HX}

Ok

and reader filtering capability. The approach that we
formulate of

middleware and also middleware to reader network
traffic.

We first analyzed the related standards to
understand the key concept of query processing both
After that we

propose query plan and the middleware architecture
with role of each module.

expenments approach through
simulated RFID data and query generator,

can minimize processing time

in middleware and reader level.

Then we perform
to validate our

and
demonstrate that our approach 1s effecive and
efficient.

References

[1] R. Angles, “RFID Technologies: Supply—-Chain
Application and Implementation Issues,”
Information System Management, Vol. 22, no. 1,
pp. ©b1-65, December 2000.

M. T. Egan and W. S. Sandberg, “Auto
Identification Technology and Its Impact on
Patient Safety in the Operating Room of the
Future,” Surgical Innovation, Vol. 14 no. 1, pp.
A41-50, March 2007.

S. Zhou, W. Ling and Z. Peng, “An RFID-based
remote monitoring system for enterprise internal
production management,” The International
Joumal of Advanced Manufacturing Technology,
Vol. 33, no. 7-8, pp. 837-844, July 2007.
EPCglobal Inc. http://www.epcglobaline.org.

Y. Bai F. Wang and P. Liu, ‘“Efficiently
Filtering RFID Data Stream,” in Proc. of First
International VLDB Workshop on Clean
Database, pp. 50-57, Seoul, Korea, September
2006.

F. Wang and P. Liu, “Temporal Management of
RFID Data,” in Proc. of 3lst International Conf.
of Very Large Data Bases, pp. 1128-1139,
Trondheim, Norway, September 2005.

EPCglobal Inc. Reader Protocol (RP) Standard,
version 1.1, Ratified Standard, June 21, 2006.

H. S. Chae and]J. Park, “An Approach to
Adaptive Load Balancing for REFID
Middlewares,” International Journal of Applied
Mathematics and Computer Sciences, Vol. 2, no.
2, pp. 7680, 2006.

S. M. Park, J. H. Song, C. S. Kim and J. J.
Kim, “Load Balancing Method Using Connection

[2]

[3]

[4]
5]

[6]

[7]
[8]

O]

otg| =FX H 45 H CIH A 3 =

(261)

121

Pool in RFID Middleware,” in Proc. of 5th ACIS
International Conf. on Software Engineering
Research, Management and Applications, pp.
132-137, Busan, Korea, August 2007.

[10] J. Gehrke and S. Madden, “Query Processing in
Sensor Networks,” IEEE Pervasive Computing,
Vol. 3, no. 1, pp. 46-55, March 2004.

[11] EPCglobal Inc. The Application Level Events
(ALE) Specification, version 1.1, Ratified
Specification, February 27 2008.

122

RFID DIS¥O{0IM HSl X2l

o5t 2l oA ol FIe 250} OLALE. 8

X~ XA 7H
Muhammad Ashad Kabir(g-4 3]) F 7 AEAd
2004 B. Sc. in Computer | 1997 Ao g ?‘ FrE &8
Science & Engineering, 3-}/\}
CUET (Bangladesh) | 1999 RAFE . gk
20066 ~H A FAbgE . ek 5’4‘“3*5‘4 A A}
AFE &S A A 20023 ~ & A FAoign ojEd
74 15515161_.,]_ HL}\].J_].XJ |
<FHAHEoF ¢ RFID Middleware, Reader Level . RFID v &4 99, ALE ﬂ]l o} o)

Filtering, Query Processing in Middleware>

2 3 3(H3d

1982 /"1€ﬂ1§}
G I

19843 M -=distal sk

HA A7 & 8k A AL

19883 Medidta giEd

A A A A7) &8k vhAL

AFH e a5

Aol dolguo] 2 A

THIAEH 2 m &4 0>

413 2}
AR A A

198’7‘4 Zﬂzﬂ
<FHAEoF ¢ RFID v &

}.]-];H <1 %1

A~ gl
.,

A AAAE A=

(262)

