References
- Berger, J. O. and Bernardo, J. M. (1989). Estimating a product of means: Bayesian analysis with reference priors, Journal of the American Statistical Association, 84, 200-207 https://doi.org/10.2307/2289864
- Berger, J. O. and Bernardo, J. M. (1992). On the development of reference priors (with discussion), In Bayesian Statistics IV, 35-60, eds. J. M. Bernardo, et al., Oxford University Press, Oxford
- Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference, Journal of the Royal Statistical Society, Series B, 41, 113-147
- Chhikara, R. S. and Folks, J. L. (1989). The Inverse Gaussian Distribution; Theory, Methodology and Applications, Marcel Dekker, New York
- Choi, B. and Kim, K. (2004). Certain multi sample tests for inverse Gaussian populations, Communications in Statistics: Theory & Methods, 33, 1557-1576 https://doi.org/10.1081/STA-120037260
- Cox, D. R. and Reid, N. (1987). Parameters orthogonality and approximate conditional inference, Journal of the Royal Statistical Society, Serise B, 49, 1-39
- Datta, G. S. and Ghosh, J. K. (1995a). On priors providing frequentist validity for Bayesian inference, Biometrika, 82, 37-45 https://doi.org/10.1093/biomet/82.1.37
- Datta, G. S. and Ghosh, M. (1995b). Some remarks on noninformative priors, Journal of the American Statistical Association, 90, 1357-1363 https://doi.org/10.2307/2291526
- Datta, G. S. and Ghosh, M. (1996). On the invariance of noninformative priors. The Annals of Statistics, 24, 141-159 https://doi.org/10.1214/aos/1033066203
- DiCiccio, T. J. and Steven, E. S. (1994). Frequentist and Bayesian Bartlett correction of test statistics based on adjusted profile likelihood, Journal of the Royal Statistical Society, Series B, 56, 397-408
- Folks, J. L. and Chhikara, R. S. (1978). The inverse Gaussian distribution and its statistical application-A review, Journal of the Royal Statistical Society, Series B, 40, 263-289
- Ghosh, J. K. and Mukerjee, R. (1992). Non-informative priors (with discussion), In Bayesian Statistics IV, 195-210, eds. J. M. Bernardo, et. al., Oxford University Press, Oxford
-
Gleser, L. J. and Hwang, J. T. (1987). The non existence of 100(1-
$\alpha$ )% confidence sets of finite expected diameter in error-in-variables and related models. The Annals of Statistics, 15, 1351-1362 https://doi.org/10.1214/aos/1176350597 -
Hsieh, H. K. (1990). Inferences on the coe
$\pm$ cient of variation of an inverse Gaussian distribution, Communications in Statistics-Theory and Methods, 19, 1589-1605 https://doi.org/10.1080/03610929008830279 - Kang, S. G., Kim, D. H. and Lee, W. D. (2004). Noninformative priors for the ratio of parameters in inverse Gaussian distribution, The Korean Journal of Applied Statistics, 17, 49-60
- Mudholkar, G. and Natarajan, R. (2002). The inverse Gaussian models: Analogues of symmetry, skewness and kurtosis, Annals of the Institute Statistical thematics, 54, 138-154 https://doi.org/10.1023/A:1016173923461
- Mukerjee, R. and Dey, D. K. (1993). Frequentist validity of posterior quantiles in the presence of a nuisance parameter: Higher order asymptotics, Biometrika, 80, 499-505 https://doi.org/10.1093/biomet/80.3.499
- Mukerjee, R. and Ghosh, M. (1997). Second order probability matching priors, Biometrika, 84, 970-975 https://doi.org/10.1093/biomet/84.4.970
- Seshadri, V. (1999). The Inverse Gaussian Distribution: Statistical Theory and Applications, Springer, New York
- Stein, C. (1985). On the coverage probability of confidence sets based on a prior distribution, In Sequential Methods in Statistics, Banach Center Publications, 16, 485-514 https://doi.org/10.4064/-16-1-485-514
- Tibshirani, R. (1989). Noninformative priors for one parameter of many, Biometrika, 76, 604-608 https://doi.org/10.1093/biomet/76.3.604
- Tweedie, M. C. K. (1957a). Statistical properties of inverse Gaussian distributions I,The Annals of Mathematical Statistics, 28, 362-377 https://doi.org/10.1214/aoms/1177706964
- Tweedie, M. C. K. (1957b). Statistical properties of inverse Gaussian distributions II, The Annals of Mathematical Statistics, 28, 696-705 https://doi.org/10.1214/aoms/1177706881
- Welch, B. L. and Peers, H. W. (1963). On formulae for confidence points based on integrals of weighted likelihoods, Journal of the Royal Statistical Society, Serise B, 25, 318-329
- Whitmore, G. A. (1979). An inverse Gaussian model for labour turnover, Journal of the Royal Statistical Society, Series A, 142, 468-478 https://doi.org/10.2307/2982553