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Cover Inequalities for the Robust Knapsack Problem
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ABSTRACT

Robust knapsack problem appears when dealing with data uncertainty on the knapsack constraint.
This note presents a generalization of the cover inequality for the problem with its lifting procedure.
Specifically, we show that the lifting can be done in a polynomial time as in the usual knapsack prob-

lem. The results can serve as a building block in devising an efficient branch-and-cut algorithm for
the general robust (0, 1) IP problem.
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1. Introduction

The robust knapsack problem (RKP) was introduced in [2], of which the feasible set
can be defined as follows:

S={xeB" IZa}.x}.+ max Zd}.x}. < b}

: TcN,ITI=I" 4
jEN jeT

={xeB"| Zajx),. +Zdjxj <b, forallUc N with |UI=T}, (1)
jeN jel

where N ={12,---,n}.For jeN, a, and d; are nonnegative integers. I' isa po-

sitive number used to control the conservatism of the solution, see Bertimas and Sim

[3], where 1<T <n. Note that the number of constraints in (1) is ,C, . Without loss
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of generality, we can assume a +d;. <b, for all jeN, and so, conv(S) is full-

dimensional.
The (RKP) appears when there is uncertainty on the knapsack coefficients. Spe-

cifically, for each item je N, we are given a nominal weight 4, with its maximum
possible deviation d; from the nominal value. ' is used to control the number of

items of which weights simultaneously can take upper bounds. In [3], theoretical re-
sults are presented which can be used to determine the value of I" to meet specific
robustness requirement (the probability of infeasibility) of the optimal solution.

In this note, we present a generalization of the cover inequality to the case of
(RKP). Also by giving a disjunctive representation of the set S, we show that the lift-
ing of the cover inequality can be done in a polynomial time as in the case of ordinary
knapsack problem. Since cover inequalities have been successfully applied to solve
large-scale (0, 1) IP problems, the results can also be used to devise an efficient

branch-and-cut procedure for solving robust (0, 1) IP problems.

2. Cover Inequalities and Sequential Lifting Procedure

As noted in the previous section, the number of constraints in (1) is very large in gen-
eral. However, we can find an alternative representation of S which is more compact
and can be used for deriving a sequential lifting procedure for the cover inequality
for (RKP). Before presenting the result, we need some definitions. First, we assume

that the indices are ordered such that d, >d, >--->d, and also define d,,, =0.Fora

subset K< N, letus define I'(K) as follows:

I'(K)=K if IKIKT
I'(K)c K if IKI2T'+1, where IT'(K)I=T and maxj< min j (2)

jel'(K) JeKAT(K)

Note that when |KI>T+1, I'(K) is the first I' elements of K where K is or-
dered by the indices. Finally, for le Nu{n+1} and Kc N, let N, ={jeNIj<li}
and K, =KnNN,.

The following proposition gives a disjunctive representation of S.
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Proposition 1: S =U, 1 101 100y S), where S ={xeB"1 Y ax, + > (d —d)x, <b-Td,}.

jeN jeN,

Proof. First, we show that Sc U, vy 1S

Let x(K), the characteristic vector of a subset K < N, be feasible, that is,

Ya+ > d<b. (3)

jek jel(K)

Suppose |KI<T .Then I'(K)=K, which implies y(K)e€S,,,.

So letus assume |K>T+1.Let I' =max{j!jeTl'(K)}. Then we have K, =T(K) and
IT(K)I=T". Hence

Ya+ ) (d-d)+Td. => a,+ > d <b, (4)

jek jeK jeK jeT(K)

Which implies y(K) € S,.. Note that since | KI1>T+1, [' >T". Also note that if ' =n, then
|KI=T and so y(K)e€S,,, by the above result. Thus we have Sc U, 1, | S, and
this completes the first part of the proof.

Now we show that U,.,, ,..;,5 cS.

J-ln+l

i1}

For I' e Nu{n+1}, choose #(K)eS,..Suppose ' =n+1.Thensince [(K)c K,

da+ Y d <Y (a,+d)<b, (5)

jek jel(K) jekK

which implies y(K)eS.Soletusassume [ <n.Then

Z%*’Z)%:Zaﬁ 2 4+ 2 4

jeK jel'(K jek jel (K} Ny« jel' (KN«
jek jeKMNp

since |[I'(K)I<T" and d, <d,. forall jeI(K)\N,  whichimplies 7(K)e S .Hence we have

UIe{l,Z,...,n,n+1}Sl cSc UEE{F,F+1,...,H-1,?1+1}SI' Thus we can condude S = Ufe{F,T+1,...,n—1,n+1} 5. ®
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Now we can present the lifting procedure for the cover inequality for (RKP). First,
let us define a cover for (RKP) as follows.

Definition 1: Cc N is acover if D a,+ D d. >b. A cover is minimal if none of its
jeC jel'(C)

proper subset 1s a cover. For a minimal cover C, the cover inequality is

> x; <C|-1. (7)
jeC

For a subset K< N, let us define P(K)=conv{Slx; =0, forallje N\K}. Thenit

can be easily shown that the inequality (7) defines a facet of P(C) when C is a minimal
cover. Hence by applying the sequential lifting procedure to it, we can obtain a facet-
defining inequality for P(N)=conu(S) [4]. As defined in (1), the number of con-

straints in S is very large in general. Hence at first glance, the lifting seems to be very
difficult since we should deal with multiple knapsack problems simultaneously.
However, by using the disjunctive representation of S presented in proposition 1, we
can show that the lifting can be done in a polynomial time as is the case with an ordi-

nary knapsack problem. To show the result, we need the following lemma [4].

Lemma 1: If ﬂ}xj <zy is valid for S{cRy and Y njz-xj <z§ is valid for
jeN jeN

Sy CRY. then Y min(z}, z})x; <max(ry, ;) isvalid for S;US;.
JEN

Let C be a minimal cover with cover inequality defined as (7). The following is a

sequential lifting procedure for the inequality.

Sequential Procedure for Cover Inequality of (RKP)
Let N\C={j,,/,,...,j;} and assume that the lifting is applied in that order. For

k-1
kell,---,t}, let Zx}. +Zaixjf <ICl-1be a current lifted cover inequality. Then «;
jeC i=1

is determined as follows:

Q) = minle{F,F+1,---n—1,n+1}( ICl-1-Z;}) and (8)
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k-1
Z, :max{Zx}. +Zal.x}.f lxe§,x, =1,x =0, 7e N\(Culj,....7. )t 9)
i=1

jeC

Note that the maximization problem in (9) is an ordinary knapsack problem and

it can be solved in a polynomial time [4].

Proposition 2: Let Cc N bea minimal cover. Then the lifted cover inequality obtained by
applying the above procedure is facet-defining for conv(S).

Proof: The validity of the inequality can be proved by sequentially applying lemma
1 in the order of lifting. The facet-defining property can be proved by noting that at

each step kef{l,--,t}, we can get a feasible solution with Xj, =1 that satisfies the

lifted cover inequality at equality (by choosing the solution where the minimum in (8)

is attained). ®

3. Concluding Remarks

In this note, we proved that the lifting for the cover inequality for (RKP) can be done
in a polynomial time. However, the procedure would be computationally demanding
since in general, we should solve n—T+1 knapsack problems to determine each
lifting coefficient. An enhancement of the procedure can be made when 1CI<T. In
this case, we can easily show that the minimum in (8) is attained when [=n+1.
Hence in this case, we only need to solve single knapsack problem in each step of the
sequential lifting procedure. Another interesting research topic is to further analyze
the disjunctive representation of S within the framework of disjunctive programming

given in [1]. The approach can lead to other strong valid inequalities and strong re-
formulations for (RKP).
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