Inapproximability of the Max-cut Problem with Negative Weights ## Sung-Pil Hong* Department of Industrial Engineering, Seoul National University, Korea, (Received: April 2, 2008 / Revised: April 16, 2008 / Accepted: April 16, 2008) #### **ABSTRACT** We show that when a max-cut problem is allowed native-weight edges, to decide if the problem has a cut of a positive weight is NP-hard. This implies that there is no polynomial time algorithm which guarantees a cut whose objective value is no less than $\frac{1}{p(\langle I \rangle)}$ times the optimum for any polynomially computable polynomial p, where $\langle I \rangle$ denotes the encoding length of an instance I. Keyword: Maximum Cut, Negative Weights, NP-hard, Sparsest Cut #### 1. Introduction This short note was motivated by [3] which investigated polynomially solvable cases of the maximum cut problem, or Max-Cut characterized by the signs of the objective coefficients. They extended the problem to have negative weights. **Problem 1.1** Given an undirected graph G = (V, E), and the nonnegative edge weights w_e , $e \subseteq E$, find a cut, $(W; V \setminus W)$ of V of the maximum sum of weights of edges in the cut. When only nonnegative edges are allowed, Max-Cut is a well-known NP-hard problem that has been intensively studied in various contexts. Their observation begins with that Max-Cut is equivalent to the minimum cut problem, by negative weights, which is polynomially solvable via the maximum flow ^{*} E- mail: sphong@snu.ac.kr 88 HONG problem. If the number of positive edges are small enough, [3] showed that the polynomiality is maintained. When the subgraph induced by positive edges has a node cover whose size is $O(\log n^k)$, then Max-Cut is solvable in polynomial time. If, on the other hand, the minimum cover size is $O(n^{1/k})$, then, they also showed, Max-Cut is strongly NP-hard. This note focuses on the negative edges. Once the number of positive edges is large enough for the problem to be NP-hard then how the negative edges affect the intractability? Do they mitigate it or worsen it? The meaning of the question lies in that Max-Cut with positive weights only is readily approximable. We can easily construct a cut whose weight is at least the half of the optimum (See, e.g. [4]). In their seminal work, Goemans and Williamson [1] developed a randomized algorithm that guarantees 0.878-approximation. In this paper, we show that when negative weights are allowed no approximation is possible for Max-Cut under the premise, $P \neq NP$. For any polynomially computable function $p(\langle I \rangle)$ of the input size, $\langle I \rangle$ of a Max-Cut instance, I, guaranteeing a solution whose objective value is $\frac{1}{p(\langle I \rangle)}$ times the optimum is impossible in polynomial time. ## 2. Inapproximability We now show that the sparsest cut problem is polynomially reducible to Max-Cut with negative weights. **Problem 2.1:** Sparsest cut problem [2]: Suppose G = (V, E) is an undirected graph with nonnegative edge capacities c_e . Consider a set $S(\subseteq V \times V)$ of k pairs of nodes, $\{(s_1,t_1),\cdots,(s_k,t_k)\}$. For each pair (s_l,t_l) , we assign a demand d_l . For a cut $(W;V\setminus W)$, let d(W) be the total demand separated by the cut: $d(W) = \sum_{l:|\{s_l,t_l\}\cap W|=1} d_l$. Also, denote, by c(W), the capacity of edges in the cut $(W;V\setminus W)$. Find a $W\subseteq V$ such that the ratio, d(W)/c(W) is maximized. Consider the binary search query to solve Problem 2.1: Given $$\lambda \in \mathbb{Q}_+$$, is there a cut $(W; V \setminus W)$ such that $\frac{d(W)}{c(W)} > \lambda$? (1) Notice that we can make all the data, c and d, integral while keeping the problem size polynomially bounded. Then, by typical arguments, in $\log(k \mid E \mid c_{\max} d_{\max})$ queries with $\lambda \in [\frac{1}{E \mid c_{\max}}, kd_{\max}]$, we can find the optimum of Problem 2.1. Here, $c_{\max}(d_{\max})$ is the maximum value of an edge cost (a demand, respectively). The answer to the query is "yes" if and only if the optimal value of the following problem is positive: $$\max_{W\subseteq V}\{d(W)-\lambda c(W)\}. \tag{2}$$ We now reduce (2) to Max-Cut with negative edges. In doing so, for simplicity, we will use c_{ij} instead of λc_{ij} . For the construction of Max-Cut instance, we use the same graph G=(V,E) from the given sparsest cut problem. Assign the negative weight, $w_{ij}=-c_{ij}$ to every edge $ij\subseteq E$. For each pair, (s_l,t_l) from S, create the edge s_lt_l if it is not in the original graph. Assign the positive weight $w_{s_lt_l}=d_l$ to the edge s_lt_l , $l=1,2,\cdots k$. If the edge is original and hence already assigned the negative weight $-c_{s_lt_l}$, then we add d_l to it. The final weight is then $w_{s_lt_l}=d_l-c_{s_lt_l}$. It is easy to see that the Max-Cut instance, I, constructed above is equivalent to (2). Hence, the answer to the query, (1) is "yes" if and only if I has a proper cut $(W;V\setminus W)$ $(W\neq V)$ having positive objective value. This implies if there is a polynomial algorithm which guarantees a cut whose objective value is no less than $\frac{1}{p(\langle I \rangle)}$ times the optimum, we can verify in a polynomial time whether the answer to the query (2) is "yes" or "no". Hence, we can solve the sparsest cut problem polynomially, which is impossible under the premise NP \neq P. 90 HONG ## 3. Open problem We have shown that when the number of the negative edges is arbitrary, Max-Cut is not approximable within any factor. It will be interesting so see, when the size of negative edges decreases, how the approximability changes accordingly. ### References - [1] Goemans, M. X. and D. P. Williamson, "Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming," *J. ACM* 42 (1995) 1115-1145. - [2] Matula, D. W. and F. Shahrokhi, Sparsest cuts and bottleneck in graphs, Discrete Appl. Math., 27 (1990) 113-123. - [3] McCormick, S. T., M. R. Rao, and G. Rinaldi, Easy and difficult objective functions for max cut, Math. Program, Ser. B 94 (2003) 459-466. - [4] Vazirani, V. V., Approximation algorithms, Springer, Berlin, 2001.