High Cell Density Culture of Anabaena variabilis with Controlled Light Intensity and Nutrient Supply

  • Yoon, Jong-Hyun (School of Chemical and Biological Engineering, Institute of Bioengineering, Seoul National University) ;
  • Shin, Jong-Hwan (School of Chemical and Biological Engineering, Institute of Bioengineering, Seoul National University) ;
  • Ahn, Eun-Kyung (School of Chemical and Biological Engineering, Institute of Bioengineering, Seoul National University) ;
  • Park, Tai-Hyun (School of Chemical and Biological Engineering, Institute of Bioengineering, Seoul National University)
  • Published : 2008.05.31

Abstract

Controlling the light energy and major nutrients is important for high cell density culture of cyanobacterial cells. The growth phase of Anabaena variabilis can be divided into an exponential growth phase and a deceleration phase. In this study, the cell growth in the deceleration phase showed a linear growth pattern. Both the period of the exponential growth phase and the average cell growth rate in the deceleration phase increased by controlling the light intensity. To control the light intensity, the specific irradiation rate was maintained above $10\;{\mu}mol/s/g$ dry cell by increasing the incident light intensity stepwise. The final cell density increased by controlling the nutrient supply. For the control of the nutrient supply, nitrate, phosphate, and sulfate were intermittently added based on the growth yield, along with the combined control of light intensity and nutrient concentration. Under these control conditions, both final cell concentration and cell productivity increased, to 8.2 g/l and 1.9 g/l/day, respectively.

Keywords

References

  1. Anupama, S. and P. Ravindra. 2000. Value-added food: Single cell protein. Biotechnol. Adv. 18: 459-479 https://doi.org/10.1016/S0734-9750(00)00045-8
  2. Binaghi, L., A. D. Borghi, A. Lodi, A. Converti, and M. D. Borghi. 2003. Batch and fed-batch uptake of carbon dioxide by Spirulina platensis. Process Biochem. 38: 1341-1346 https://doi.org/10.1016/S0032-9592(03)00003-7
  3. Choi, S.-L., I. S. Suh, and C.-G. Lee. 2003. Lumostatic operation of bubble column photobioreactors for Haematococcus pluvialis cultures using a specific light uptake rate as a control parameter. Enzyme Microb. Technol. 33: 403-409 https://doi.org/10.1016/S0141-0229(03)00137-6
  4. Collier, J. and A. R. Grossman. 1992. Chlorosis induced by nutrient deprivation in Synechococcus sp. strain PCC 7942: Not all bleaching is the same. J. Bacteriol. 174: 4718-4726 https://doi.org/10.1128/jb.174.14.4718-4726.1992
  5. Danesi, E. D. G., C. O. Rangel-Yagui, J. C. M. Carvalho, and S. Sato. 2002. An investigation of effect of replacing nitrate by urea in the growth and production of chlorophyll by Spirulina platensis. Biomass Bioenerg. 23: 261-269 https://doi.org/10.1016/S0961-9534(02)00054-5
  6. Eriksen, N. T., T. Geest, and J. J. L. Iversen. 1996. Phototrophic growth in the lumostat: A photobioreactor with on-line optimization of light intensity. J. Appl. Phycol. 8: 345-352 https://doi.org/10.1007/BF02178577
  7. Glazer, A. N. 1994. Phycobiliprotein - A family of valuable, widely used fluorophores. J. Appl. Phycol. 6: 105-112 https://doi.org/10.1007/BF02186064
  8. Grossman, A. R., M. R. Schaefer, G. G. Chiang, and J. L. Collier. 1995. The response of cyanobacteria to environmental conditions: Light and nutrients, pp. 641-675. In D. A. Bryant (ed.), The Molecular Biology of Cyanobacteria. Kluwer Academic Publishers, Dordrecht
  9. Harold, F. M. 1966. Inorganic polyphosphates in biology: Structure, metabolism, and function. Bacteriol. Rev. 30: 772-794
  10. Hata, J.-I., Y. Toyo-Oka, M. Taya, and S. Tone. 1997. A strategy for control of light intensity in suspension culture of phototrophic liverwort cells, Marchantia paleacea var. diptera. J. Chem. Eng. Japan 30: 315-320 https://doi.org/10.1252/jcej.30.315
  11. Irisarri, P., S. Gonnet, and J. Monza. 2001. Cyanobacteria in Uruguayan rice fields: Diversity, nitrogen fixing ability and tolerance to herbicides and combined nitrogen. J. Biotechnol. 91: 95-103 https://doi.org/10.1016/S0168-1656(01)00334-0
  12. Jacob, J. and D. W. Lawlor. 1993. In vivo photosynthetic electron transport does not limit photosynthetic capacity in phosphatedeficient sunflower and maize leaves. Plant Cell Environ. 16: 785-795 https://doi.org/10.1111/j.1365-3040.1993.tb00500.x
  13. Javanmardian, M. and B. O. Palsson. 1991. High-density photoautotrophic algal cultures: Design, construction, and operation of a novel photobioreactor system. Biotechnol. Bioeng. 38: 1182-1189 https://doi.org/10.1002/bit.260381010
  14. Jeon, Y.-C., C.-W. Cho, and Y.-S. Yun. 2006. Combined effects of light intensity and acetate concentration on the growth of unicellular microalga Haematococcus pluvialis. Enzyme Microb. Technol. 39: 490-495 https://doi.org/10.1016/j.enzmictec.2005.12.021
  15. John, E. H. and K. J. Flynn. 2000. Modelling phosphate transport and assimilation in microalgae: How much complexity is warranted? Ecol. Modelling 125: 145-157 https://doi.org/10.1016/S0304-3800(99)00178-7
  16. Kim, C.-J., Y.-H. Jung, S.-R. Ko, H.-I. Kim, Y.-H. Park, and H.-M. Oh. 2007. Raceway cultivation of Spirulina platensis using underground water. J. Microbiol. Biotechnol. 17: 853-857
  17. Kim, J.-D. and C.-G. Lee. 2005. Systemic optimization of microalgae for bioactive compound production. Biotechnol. Bioprocess Eng. 10: 418-424 https://doi.org/10.1007/BF02989824
  18. Kim, J.-D. and C.-G. Lee. 2006. Diversity of heterocystous filamentous cyanobacteria (blue-green algae) from rice paddy fields and their differential susceptibility to ten fungicides used in Korea. J. Microbiol. Biotechnol. 16: 240-246
  19. Kim, J.-D. and C.-G. Lee. 2006. Characterization of two algal lytic bacteria associated with management of the cyanobacterium Anabaena flosaquae. Biotechnol. Bioprocess Eng. 11: 382-390
  20. Kim, Z.-H., S.-H. Kim, H.-S. Lee, and C.-G. Lee. 2006. Enhanced production of astaxanthin by flashing light using Haematococcus pluvialis. Enzyme Microb. Technol. 39: 414-419 https://doi.org/10.1016/j.enzmictec.2005.11.041
  21. Kozlowska-Szerenos, B., P. Zielin'ski, and S. Maleszewski. 2000. Involvement of glycolate metabolism in acclimation of Chlorella vulgaris cultures to low phosphate supply. Plant Physiol. Biochem. 38: 727-734 https://doi.org/10.1016/S0981-9428(00)01175-X
  22. Kozlowska-Szerenos, B., I. Bialuk, and S. Maleszewski. 2004. Enhancement of photosynthetic $O_2$ evolution in Chlorella vulgaris under high light and increased $CO_2$ concentration as a sign of acclimation to phosphate deficiency. Plant Physiol. Biochem. 42: 403-409 https://doi.org/10.1016/j.plaphy.2004.02.010
  23. Lee, H.-S., Z.-H. Kim, S.-E. Jung, J.-D. Kim, and C.-G. Lee. 2006. Specific light uptake rate can be served as a scale-up parameter in photobioreactor operations. J. Microbiol. Biotechnol. 16: 1890-1896
  24. Lee, H.-S., M.-W. Seo, Z.-H. Kim, and C.-G. Lee. 2006. Determining the best specific light uptake rates for the lumostatic cultures in bubble column photobioreactors. Enzyme Microb. Technol. 39: 447-452 https://doi.org/10.1016/j.enzmictec.2005.11.038
  25. Lee, K.-S., Y.-S. Lo, Y.-C. Lo, P.-J. Lin, and J.-S. Chang. 2004. Operation strategies for biohydrogen production with a high-rate anaerobic granular sludge bed bioreactor. Enzyme Microb. Technol. 35: 605-612 https://doi.org/10.1016/j.enzmictec.2004.08.013
  26. Lem, N. W. and B. R. Glick. 1985. Biotechnological uses of cyanobacteria. Biotechnol. Adv. 3: 195-208 https://doi.org/10.1016/0734-9750(85)90291-5
  27. Moreno, J., M. A. Vargas, H. Olivares, J. Rivas, and M. G. Guerrero. 1998. Exopolysaccharide production by the cyanobacterium Anabaena sp. ATCC 33047 in batch and continuous culture. J. Biotechnol. 60: 175-182 https://doi.org/10.1016/S0168-1656(98)00003-0
  28. Rangel-Yagui, C. O., E. D. G. Dansei, J. C. M. de Carvalho, and S. Sato. 2004. Chlorophyll production from Spirulina platensis: Cultivation with urea addition by fed-batch process. Bioresour. Technol. 92: 133-141 https://doi.org/10.1016/j.biortech.2003.09.002
  29. Rao, R., A. R. Sarada, and G. A. Ravishankar. 2007. Influence of $CO_2$ on growth and hydrocarbon production in Botryococcus braunii. J. Microbiol. Biotechnol. 17: 414-419
  30. Suh, I. S. and C.-G. Lee. 2003. Photobioreactor engineering: Design and performance. Biotechnol. Bioprocess Eng. 8: 313-321 https://doi.org/10.1007/BF02949274
  31. Suh, I. S. and S. B. Lee. 2001. Cultivation of a cyanobacterium in an internally radiating air-lift photobioreactor. J. Appl. Phycol. 13: 381-388 https://doi.org/10.1023/A:1017979431852
  32. Tsygankov, A. A., A. S. Fedorov, S. N. Kosourov, and K. K. Rao. 2002. Hydrogen production by cyanobacteria in an automated outdoor photobioreactor under aerobic conditions. Biotechnol. Bioeng. 80: 777-783 https://doi.org/10.1002/bit.10431
  33. Tyystjarvi, E. and E.-M. Aro. 1996. The rate constant of photoinhibition, measured in lincomycin-treated leaves, is directly proportional to light intensity. Proc. Natl. Acad. Sci. USA 93: 2213-2218
  34. Wijanarko, A., Dianursanti, M. Gozan, S. M. K. Andika, P. Widiastuti, H. Hermansyah, A. B. Witarto, K. Asami, R. W. Soemantojo, K. Ohtaguchi, and S. S. Koo. 2006. Enhancement of carbon dioxide fixation by alteration of illumination during Chlorella vulgaris-Buitenzorg's growth. Biotechnol. Bioprocess Eng. 11: 484-488 https://doi.org/10.1007/BF02932071
  35. Yagishita, T. and T. Horigome. 1993. Effect of light, $CO_2$, and inhibitors on the current output of biofuel cells containing the photosynthetic organism Synechococcus sp. J. Chem. Tech. Biotechnol. 56: 393-399
  36. Yoon, J. H., J. H. Shin, M.-S. Kim, S. H. Sim, and T. H. Park. 2006. Evaluation of conversion efficiency of light to hydrogen energy by Anabaena variabilis. Int. J. Hydrogen Energy 31: 721-727 https://doi.org/10.1016/j.ijhydene.2005.06.023
  37. Yoon, J. H., S. H. Sim, M.-S. Kim, and T. H. Park. 2002. High cell density culture of Anabaena variabilis using repeated injections of carbon dioxide for the production of hydrogen. Int. J. Hydrogen Energy 27: 1265-1270 https://doi.org/10.1016/S0360-3199(02)00109-X