References
- Anupama, S. and P. Ravindra. 2000. Value-added food: Single cell protein. Biotechnol. Adv. 18: 459-479 https://doi.org/10.1016/S0734-9750(00)00045-8
- Binaghi, L., A. D. Borghi, A. Lodi, A. Converti, and M. D. Borghi. 2003. Batch and fed-batch uptake of carbon dioxide by Spirulina platensis. Process Biochem. 38: 1341-1346 https://doi.org/10.1016/S0032-9592(03)00003-7
- Choi, S.-L., I. S. Suh, and C.-G. Lee. 2003. Lumostatic operation of bubble column photobioreactors for Haematococcus pluvialis cultures using a specific light uptake rate as a control parameter. Enzyme Microb. Technol. 33: 403-409 https://doi.org/10.1016/S0141-0229(03)00137-6
- Collier, J. and A. R. Grossman. 1992. Chlorosis induced by nutrient deprivation in Synechococcus sp. strain PCC 7942: Not all bleaching is the same. J. Bacteriol. 174: 4718-4726 https://doi.org/10.1128/jb.174.14.4718-4726.1992
- Danesi, E. D. G., C. O. Rangel-Yagui, J. C. M. Carvalho, and S. Sato. 2002. An investigation of effect of replacing nitrate by urea in the growth and production of chlorophyll by Spirulina platensis. Biomass Bioenerg. 23: 261-269 https://doi.org/10.1016/S0961-9534(02)00054-5
- Eriksen, N. T., T. Geest, and J. J. L. Iversen. 1996. Phototrophic growth in the lumostat: A photobioreactor with on-line optimization of light intensity. J. Appl. Phycol. 8: 345-352 https://doi.org/10.1007/BF02178577
- Glazer, A. N. 1994. Phycobiliprotein - A family of valuable, widely used fluorophores. J. Appl. Phycol. 6: 105-112 https://doi.org/10.1007/BF02186064
- Grossman, A. R., M. R. Schaefer, G. G. Chiang, and J. L. Collier. 1995. The response of cyanobacteria to environmental conditions: Light and nutrients, pp. 641-675. In D. A. Bryant (ed.), The Molecular Biology of Cyanobacteria. Kluwer Academic Publishers, Dordrecht
- Harold, F. M. 1966. Inorganic polyphosphates in biology: Structure, metabolism, and function. Bacteriol. Rev. 30: 772-794
- Hata, J.-I., Y. Toyo-Oka, M. Taya, and S. Tone. 1997. A strategy for control of light intensity in suspension culture of phototrophic liverwort cells, Marchantia paleacea var. diptera. J. Chem. Eng. Japan 30: 315-320 https://doi.org/10.1252/jcej.30.315
- Irisarri, P., S. Gonnet, and J. Monza. 2001. Cyanobacteria in Uruguayan rice fields: Diversity, nitrogen fixing ability and tolerance to herbicides and combined nitrogen. J. Biotechnol. 91: 95-103 https://doi.org/10.1016/S0168-1656(01)00334-0
- Jacob, J. and D. W. Lawlor. 1993. In vivo photosynthetic electron transport does not limit photosynthetic capacity in phosphatedeficient sunflower and maize leaves. Plant Cell Environ. 16: 785-795 https://doi.org/10.1111/j.1365-3040.1993.tb00500.x
- Javanmardian, M. and B. O. Palsson. 1991. High-density photoautotrophic algal cultures: Design, construction, and operation of a novel photobioreactor system. Biotechnol. Bioeng. 38: 1182-1189 https://doi.org/10.1002/bit.260381010
- Jeon, Y.-C., C.-W. Cho, and Y.-S. Yun. 2006. Combined effects of light intensity and acetate concentration on the growth of unicellular microalga Haematococcus pluvialis. Enzyme Microb. Technol. 39: 490-495 https://doi.org/10.1016/j.enzmictec.2005.12.021
- John, E. H. and K. J. Flynn. 2000. Modelling phosphate transport and assimilation in microalgae: How much complexity is warranted? Ecol. Modelling 125: 145-157 https://doi.org/10.1016/S0304-3800(99)00178-7
- Kim, C.-J., Y.-H. Jung, S.-R. Ko, H.-I. Kim, Y.-H. Park, and H.-M. Oh. 2007. Raceway cultivation of Spirulina platensis using underground water. J. Microbiol. Biotechnol. 17: 853-857
- Kim, J.-D. and C.-G. Lee. 2005. Systemic optimization of microalgae for bioactive compound production. Biotechnol. Bioprocess Eng. 10: 418-424 https://doi.org/10.1007/BF02989824
- Kim, J.-D. and C.-G. Lee. 2006. Diversity of heterocystous filamentous cyanobacteria (blue-green algae) from rice paddy fields and their differential susceptibility to ten fungicides used in Korea. J. Microbiol. Biotechnol. 16: 240-246
- Kim, J.-D. and C.-G. Lee. 2006. Characterization of two algal lytic bacteria associated with management of the cyanobacterium Anabaena flosaquae. Biotechnol. Bioprocess Eng. 11: 382-390
- Kim, Z.-H., S.-H. Kim, H.-S. Lee, and C.-G. Lee. 2006. Enhanced production of astaxanthin by flashing light using Haematococcus pluvialis. Enzyme Microb. Technol. 39: 414-419 https://doi.org/10.1016/j.enzmictec.2005.11.041
- Kozlowska-Szerenos, B., P. Zielin'ski, and S. Maleszewski. 2000. Involvement of glycolate metabolism in acclimation of Chlorella vulgaris cultures to low phosphate supply. Plant Physiol. Biochem. 38: 727-734 https://doi.org/10.1016/S0981-9428(00)01175-X
-
Kozlowska-Szerenos, B., I. Bialuk, and S. Maleszewski. 2004. Enhancement of photosynthetic
$O_2$ evolution in Chlorella vulgaris under high light and increased$CO_2$ concentration as a sign of acclimation to phosphate deficiency. Plant Physiol. Biochem. 42: 403-409 https://doi.org/10.1016/j.plaphy.2004.02.010 - Lee, H.-S., Z.-H. Kim, S.-E. Jung, J.-D. Kim, and C.-G. Lee. 2006. Specific light uptake rate can be served as a scale-up parameter in photobioreactor operations. J. Microbiol. Biotechnol. 16: 1890-1896
- Lee, H.-S., M.-W. Seo, Z.-H. Kim, and C.-G. Lee. 2006. Determining the best specific light uptake rates for the lumostatic cultures in bubble column photobioreactors. Enzyme Microb. Technol. 39: 447-452 https://doi.org/10.1016/j.enzmictec.2005.11.038
- Lee, K.-S., Y.-S. Lo, Y.-C. Lo, P.-J. Lin, and J.-S. Chang. 2004. Operation strategies for biohydrogen production with a high-rate anaerobic granular sludge bed bioreactor. Enzyme Microb. Technol. 35: 605-612 https://doi.org/10.1016/j.enzmictec.2004.08.013
- Lem, N. W. and B. R. Glick. 1985. Biotechnological uses of cyanobacteria. Biotechnol. Adv. 3: 195-208 https://doi.org/10.1016/0734-9750(85)90291-5
- Moreno, J., M. A. Vargas, H. Olivares, J. Rivas, and M. G. Guerrero. 1998. Exopolysaccharide production by the cyanobacterium Anabaena sp. ATCC 33047 in batch and continuous culture. J. Biotechnol. 60: 175-182 https://doi.org/10.1016/S0168-1656(98)00003-0
- Rangel-Yagui, C. O., E. D. G. Dansei, J. C. M. de Carvalho, and S. Sato. 2004. Chlorophyll production from Spirulina platensis: Cultivation with urea addition by fed-batch process. Bioresour. Technol. 92: 133-141 https://doi.org/10.1016/j.biortech.2003.09.002
-
Rao, R., A. R. Sarada, and G. A. Ravishankar. 2007. Influence of
$CO_2$ on growth and hydrocarbon production in Botryococcus braunii. J. Microbiol. Biotechnol. 17: 414-419 - Suh, I. S. and C.-G. Lee. 2003. Photobioreactor engineering: Design and performance. Biotechnol. Bioprocess Eng. 8: 313-321 https://doi.org/10.1007/BF02949274
- Suh, I. S. and S. B. Lee. 2001. Cultivation of a cyanobacterium in an internally radiating air-lift photobioreactor. J. Appl. Phycol. 13: 381-388 https://doi.org/10.1023/A:1017979431852
- Tsygankov, A. A., A. S. Fedorov, S. N. Kosourov, and K. K. Rao. 2002. Hydrogen production by cyanobacteria in an automated outdoor photobioreactor under aerobic conditions. Biotechnol. Bioeng. 80: 777-783 https://doi.org/10.1002/bit.10431
- Tyystjarvi, E. and E.-M. Aro. 1996. The rate constant of photoinhibition, measured in lincomycin-treated leaves, is directly proportional to light intensity. Proc. Natl. Acad. Sci. USA 93: 2213-2218
- Wijanarko, A., Dianursanti, M. Gozan, S. M. K. Andika, P. Widiastuti, H. Hermansyah, A. B. Witarto, K. Asami, R. W. Soemantojo, K. Ohtaguchi, and S. S. Koo. 2006. Enhancement of carbon dioxide fixation by alteration of illumination during Chlorella vulgaris-Buitenzorg's growth. Biotechnol. Bioprocess Eng. 11: 484-488 https://doi.org/10.1007/BF02932071
-
Yagishita, T. and T. Horigome. 1993. Effect of light,
$CO_2$ , and inhibitors on the current output of biofuel cells containing the photosynthetic organism Synechococcus sp. J. Chem. Tech. Biotechnol. 56: 393-399 - Yoon, J. H., J. H. Shin, M.-S. Kim, S. H. Sim, and T. H. Park. 2006. Evaluation of conversion efficiency of light to hydrogen energy by Anabaena variabilis. Int. J. Hydrogen Energy 31: 721-727 https://doi.org/10.1016/j.ijhydene.2005.06.023
- Yoon, J. H., S. H. Sim, M.-S. Kim, and T. H. Park. 2002. High cell density culture of Anabaena variabilis using repeated injections of carbon dioxide for the production of hydrogen. Int. J. Hydrogen Energy 27: 1265-1270 https://doi.org/10.1016/S0360-3199(02)00109-X