Succinic Acid Production by Continuous Fermentation Process Using Mannheimia succiniciproducens LPK7

  • Oh, In-Jae (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Lee, Hye-Won (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Park, Chul-Hwan (Department of Chemical Engineering, Kwangwoon University) ;
  • Lee, Sang-Yup (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lee, Jin-Won (Department of Chemical and Biomolecular Engineering, Sogang University)
  • Published : 2008.05.31

Abstract

To achieve a higher succinic acid productivity and evaluate the industrial applicability, this study used Mannheimia succiniciproducens LPK7 (knock-out: ldhA, pflB, pta-ackA), which was recently designed to enhance the productivity of succinic acid and reduce by-product secretion. Anaerobic continuous fermentation of Mannheimia succiniciproducens LPK7 was carried out at different glucose feed concentrations and dilution rates. After extensive fermentation experiments, a succinic acid yield and productivity of 0.38 mol/mol and 1.77 g/l/h, respectively, were achieved with a glucose feed concentration of 18.0 g/l and $0.2\;h^{-1}$ dilution rate. A similar amount of succinic acid production was also produced in batch culture experiments. Therefore, these optimal conditions can be industrially applied for the continuous production of succinic acid. To examine the quantitative balance of the metabolism, a flux distribution analysis was also performed using the metabolic network model of glycolysis and the pentose phosphate pathway.

Keywords

References

  1. Celso Ricardo Denser Pamboukian, Maria Candida Reginato Facciotti. 2004. Production of the antitumoral retamycin during continuous fermentations of Streptomyces olindensis. Process Biochem. 39: 2249-2255 https://doi.org/10.1016/j.procbio.2003.11.006
  2. Chassagnole, C., N. Noisommit-Rizzi, J. W. Schmid, K. Mauch, and M. Reuss. 2002. Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnol. Bioeng. 79: 53-73 https://doi.org/10.1002/bit.10288
  3. Cox, S. J., Sagit Shalel Levanon, Ailen Sanchez, Henry Lin, Brad Peercy, George N. Bennnett, and Ka-Yiu San. 2006. Development of a metabolic network design and optimization framework incorporating implementation constraints: A succinate production case study. Metab. Eng. 8: 46-57 https://doi.org/10.1016/j.ymben.2005.09.006
  4. Hong, S. H., J. S. Kim, S. Y. Lee, Y. H. In, S. S. Choi, J. K. Rih, et al. 2004. The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens. Nature Biotechnol. 22: 1275-1281 https://doi.org/10.1038/nbt1010
  5. Kadam, K. L. and M. M. Newman. 1997. Development of a low-cost fermentation medium for ethanol production from biomass. Appl. Microbiol. Biotechnol. 47: 625-629 https://doi.org/10.1007/s002530050985
  6. Kim, D. Y., S. C. Yim, P. C. Lee, W. G. Lee, S. Y. Lee, and H. N. Ghang. 2004. Batch and continuous fermentation of succinic acid wood hydrolysate by Mannheimia succiniciproducens MBEL 55E. Enzyme Microbial Technol. 35: 648-653 https://doi.org/10.1016/j.enzmictec.2004.08.018
  7. Landucci, R., B. Goodman, and C. Wyman. 1994. Methodology for evaluating the economics of biologically producing chemical and materials from alternative feedstocks. Appl. Biochem. Biotechnol. 45-46: 678-696
  8. Lee, P. C., S. Y. Lee, S. H. Hong, and H. N. Chang. 2002. Cloning and characterization of Mannheimia succiniciproducens MBEL55E phosphoenolpyruvate carboxykinase (pckA) gene. Biotechnol. Bioprocess Eng. 7: 95-99 https://doi.org/10.1007/BF02935886
  9. Lee, P. C., S. Y. Lee, S. H. Hong, and H. N. Chang. 2002. Isolation and characterization of new succinic acid-producing bacterium, Mannheimia succiniciproducens MBEL55E, from bovine rumen. Appl. Microbiol. Biotechnol. 58: 663-668 https://doi.org/10.1007/s00253-002-0935-6
  10. Lee, P. C., S. Y. Lee, S. H. Hong, and H. N. Chang. 2003. Batch and continuous cultures of Mannheimia succiniciproducens MBEL55E for the production of succinic acid from whey and corn steep liquor. Bioprocess Biosyst. Eng. 23: 63-67
  11. Lee, P. C., S. Y. Lee, S. H. Hong, H. N. Chang, and S. C. Park. 2003. Biological conversion of wood hydrolysate to succinic acid by Anaerobiospirillum succiniciproducens. Biotechnol. Lett. 25: 111-114 https://doi.org/10.1023/A:1021907116361
  12. Lee, P. C., W. G. Lee, S. Y. Lee, and H. N. Ghang. 1999. Effects of medium components on the growth of Anaerobiospirillum succiniciproducens and succinic acid production. Process Biochem. 35: 49-55 https://doi.org/10.1016/S0032-9592(99)00031-X
  13. Lee, S. J., H. Song, and S. Y. Lee. 2006. Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production. Appl. Environ. Microbiol. 72: 1939-1948 https://doi.org/10.1128/AEM.72.3.1939-1948.2006
  14. Lynd, L. R., C. E. Wyman, and T. U. Gerngross. 1999. Biocommodity engineering. Biotechnol. Prog. 15: 777-793 https://doi.org/10.1021/bp990109e
  15. Pirt, S. J. 1975. Principles of Microbe and Cell Cultivation. Wiley, New York
  16. Rathin Datta. 1992. Process for the production of succinic acid by anaerobic fermentation. United States Patent 19: 5143833
  17. Shimizu, H. 2002. Metabolic engineering: Integrating methodologies of molecular breeding and bioprocess systems engineering. J. Biosci. Bioeng. 94: 6: 563-573 https://doi.org/10.1016/S1389-1723(02)80196-7
  18. Song, H. and S. Y. Lee. 2006. Production of succinic acid by bacterial fermentation. Enzyme Microbial Technol. 39: 352-361 https://doi.org/10.1016/j.enzmictec.2005.11.043
  19. Zeikus, J. G., M. K. Jain, and P. Elankovan. 1999. Biotechnology of succinic acid production and markets for derived industrial products. Appl. Microbiol. Biotechnol. 51: 545-552 https://doi.org/10.1007/s002530051431