Modeling of Esterase Production from Saccharomyces cerevisiae

  • Published : 2008.05.31

Abstract

A suitable simple model tested by experiments is required to address complex biological reactions like esterase synthesis by Saccharomyces cerevisiae. Such an approach might be the answer to a proper bioprocessing strategy. In this regard, a logistic model for esterase production from Saccharomyces cerevisiae has been developed, which predicts well the cell mass, the carbon source (glucose) consumption, and the esterase activity. The accuracy of the model has been statistically examined by using the Student's t-test. The parameter sensitivity analysis showed that all five parameters (${\mu}_m$, $K_a$, $X_m$, $Y_{x/s}$, and $Y_{p/x}$) have significant influence on the predicted values of esterase activity.

Keywords

References

  1. Amrane, A. and Y. Prigent. 1999. Analysis of growth and production coupling for batch cultures of Lactobacillus helveticus with the help of an unstructured model. Process Biochem. 34: 1-10 https://doi.org/10.1016/S0032-9592(97)90097-2
  2. Burhan, N., Ts. Sapundzhiev, and V. Beschkov. 2005. Mathematical modeling of cyclodextrin-glucanotransferase production by batch cultivation. Biochem. Eng. J. 24: 73-77 https://doi.org/10.1016/j.bej.2005.02.007
  3. Chung, K.-H., J.-S. Park, H.-S. Hwang, J.-C. Kim, and K.-Y. Lee. 2007. Detection and kinetics of mucosal pathogenic bacteria binding with polysaccharides. J. Microbiol. Biotechnol. 17: 1191-1197
  4. El Enshasy, H., Y. A. Fattah, A. Atta, M. Anwar, H. Omar, S. Abou El Magd, and R. Abou Zahra. 2008. Kinetics of cell growth and cyclosporin A production by Tolypocaldium inflatum when scaling up from shake flask to bioreactor. J. Microbiol. Biotechnol. 18: 128-134
  5. Gabriel, J.-P., S. Francis, and L. F. Bersier. 2005. Paradoxes in the logistic equation? Ecol. Modeling 185: 147-151 https://doi.org/10.1016/j.ecolmodel.2004.10.009
  6. Garcia-Ochoa, F. and J. A. Casas. 1999. Unstructured kinetic model for sophorolipid production by Candida bombicola. Enzyme Microb. Technol. 25: 613-621 https://doi.org/10.1016/S0141-0229(99)00089-7
  7. Garcia-Ochoa, F., V. E. Santos, and A. Alcon. 1998. Metabolic structured kinetic model for xanthan production. Enzyme Microb. Technol. 23: 75-82 https://doi.org/10.1016/S0141-0229(98)00014-3
  8. Gil, K.-I. and E. S. Choi. 2002. Estimation of nitrite concentration in the biological nitration process using enzymatic inhibition kinetics. J. Microbiol. Biotechnol. 12: 377-381
  9. Hatzakis, N. S., D. Daphnomili, and I. Smonou. 2003. Ferulic acid esterase from Humicola insolens catalyzes enantioselective transesterification of secondary alcohols. J. Mol. Catal. B Enzymatic 21: 309-311 https://doi.org/10.1016/S1381-1177(02)00228-X
  10. Heinzle, E. and R. M. Lafferty. 1980. A kinetic model for growth and synthesis of poly-$\beta$-hydroxybutyric acid (PHB) in Alcaligenes eutrophus H 16. Eur. J. Appl. Microbiol. Biotechnol. 11: 8-16 https://doi.org/10.1007/BF00514072
  11. Huang, C.-J. and C.-Y. Chen. 2006. Functions of the C-terminal region of chitinase ChiCW from Bacillus cereus 28-9 in substrate-binding and hydrolysis of chitin. J. Microbiol. Biotechnol. 16: 1897-1903
  12. Jaeger, K. E., T. Eggert, A. Eipper, and M. T. Reetz. 2001. Directed evolution and the creation of enantioselective biocatalysts. Appl. Microbiol. Biotechnol. 55: 519-530 https://doi.org/10.1007/s002530100643
  13. Kim, J.-N., M.-J. Seo, E.-A. Cho, S.-J. Lee, S.-B. Kim, C.-I. Cheigh, and Y.-R. Pyun. 2005. Screening and characterization of an esterase from a metagenomic library. J. Microbiol. Biotechnol. 15: 1067-1072
  14. Kirkpatrick, S. 1984. Optimization by simulated annealing: Quantitative studies. J. Stat. Phys. 34: 975-986 https://doi.org/10.1007/BF01009452
  15. Kwon, C. H., D. Y. Shin, J. H. Lee, S. W. Kim, and J. W. Kang. 2007. Molecular modeling and its experimental verification for the catalytic mechanism of Candida antarctica lipase B. J. Microbiol. Biotechnol. 17: 1098-1105
  16. Miron, J., M. P. Gonzalez, L. Pastrana, and M. A. Murado. 2002. Diauxic production of glucose oxidase by Aspergillus niger in submerged culture. A dynamic model. Enzyme Microb. Technol. 31: 615-620 https://doi.org/10.1016/S0141-0229(02)00143-6
  17. Miller, G. L. 1959. Use of dinitrosalicyclic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
  18. Panda, T. and B. S. Gowrishankar. 2005. Production and applications of esterases. Appl. Microbiol. Biotechnol. 67: 160-169 https://doi.org/10.1007/s00253-004-1840-y
  19. Panda, T. and B. S. Gowrishankar. 2007. Critical analysis of application of generalized distence function for optimization of important variables for eaterase synthesis by Saccharomyces cerevisiae. Biores. Technol. (in Press)
  20. Park, H.-J., Y.-J. Kim, and H.-K. Kim. 2006. Expression and characterization of a new esterase cloned directly from Agrobacterium tumefaciens genome. J. Microbiol. Biotechnol. 16: 145-148
  21. Park, K.-M., M. W. Song, S.-J. Kang, and J.-H. Lee. 2007. Batch and continuous culture kinetics for production of carotenoids by $\beta$-ionone-resistant mutant of Xanthophyllomyces dendrorhous. J. Microbiol. Biotechnol. 17: 1221-1225
  22. Paul, G. C. and C. R. Thomas. 1996. A structured model for hyphal differentiation and penicillin production using Penicillium chrysogenum. Biotechnol. Bioeng. 51: 558-572 https://doi.org/10.1002/(SICI)1097-0290(19960905)51:5<558::AID-BIT8>3.3.CO;2-G
  23. Rosen, T. C. and T. Daubmann. 2005. Esterases - industrial biocatalysts for mild and selective hydrolysis reactions. Chem. Today 23: 36-38
  24. Sathyanarayana, G. N. and T. Panda. 2003. Analysis of kinetic data of pectinases with substrate inhibition. J. Microbiol. Biotechnol. 13: 332-337
  25. Seo, K.-Y., S.-K. Heo, C. Lee, D. H. Chung, M.-G. Kim, K.-H. Lee, K.-S. Kim, G.-J. Bahk, D.-H. Bae, K.-Y. Kim, C.-H. Kim, and S.-D. Ha. 2007. Development of predictive mathematical model for the growth kinetics of Staphylococcus aureus by response surface model. J. Microbiol. Biotechnol. 17: 1437-1444
  26. Sousa, H. A., C. A. M. Afonso, J. P. B. Mota, and J. G. Crespo. 2003. Enantioselective hydrolysis of a meso-diester using pig liver esterase in a two-phase stirred tank reactor. Ind. Eng. Chem. Res. 42: 5516-5525 https://doi.org/10.1021/ie020970q
  27. Thilakavathi, M., T. Basak, and T. Panda. 2007. Modeling of enzyme production kinetics. Appl. Microbiol. Biotechnol. 73: 991-1007
  28. Toshimitsu, N., H. Hamada, and M. Kojima. 1986. Purification and some properties of an esterase from yeast. J. Ferment. Technol. 64: 459-462 https://doi.org/10.1016/0385-6380(86)90036-1
  29. Venkatesh, K. V., M. R. Okos, and P. C. Wankat. 1993. Kinetic model of growth and lactic acid production from lactose by Lactobacillus bulgaricus. Process Biochem. 28: 231-241 https://doi.org/10.1016/0032-9592(93)80039-J
  30. Weiss, R. M. and D. F. Ollis. 1980. Extracellular microbial polysaccharides. I. Substrate, biomass, and product kinetic equations for batch xanthan gum fermentation. Biotechnol. Bioeng. 22: 859-873 https://doi.org/10.1002/bit.260220410
  31. Zhang, X. W., X.-D. Gong, and F. Chen. 1999. Kinetic models for astaxanthin production by high cell density mixotrophic culture of the microalga Haematococcus pluvialis. J. Ind. Microbiol. Biotechnol. 23: 691-696 https://doi.org/10.1038/sj.jim.2900685