Heterologous Production and Detection of Recombinant Directing 2-Deoxystreptamine (DOS) in the Non-Aminoglycoside-Producing Host Streptomyces venezuelae YJ003

  • Kurumbang, Nagendra Prasad (Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University) ;
  • Oh, Tae-Jin (Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University) ;
  • Liou, Kwangkyoung (Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University) ;
  • Sohng, Jae-Kyung (Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University)
  • Published : 2008.05.31

Abstract

2-Deoxystreptamine is a core aglycon that is vital to backbone formation in various aminoglycosides. This core structure can be modified to develop hybrid types of aminoglycoside antibiotics. We obtained three genes responsible for 2-deoxystreptamine production, neo7, neo6, and neo5, which encode 2-deoxy-scyllo-inosose synthase, L-glutamine: 2-deoxy-scyllo-inosose aminotransferase, and dehydrogenase, respectively, from the neomycin gene cluster. These genes were cloned into pIBR25, a Streptomyces expression vector, resulting in pNDOS. The recombinant pNDOS was transformed into a non-aminoglycoside-producing host, Streptomyces venezuelae YJ003, for heterologous expression. Based on comparisons of the retention time on LC-ESI/MS and ESI-MS data with those of the 2-deoxystreptamine standard, a compound produced by S. venezuelae YJ003/pNDOS was found to be 2-deoxystreptamine.

Keywords

References

  1. Hong, J. S., S. H. Park, C. Y. Choi, J. K. Sohng, and Y. J. Yoon. 2004. New olyvosyl derivatives of methymycin/ pikromycin from an engineered strain of Streptomyces venezuelae. FEMS Microbiol. Lett. 238: 392-399
  2. Hong, J. S., W. S. Jung, S. K. Lee, W. S. Koh, H. S. Park, S. J. Park, Y. S. Kim, and Y. J. Yoon. 2005. The role of a second protein (DesVIII) in glycosylation for the biosynthesis of hybrid macrolide antibiotics in Streptomyces venezuelae. J. Microbiol. Biotechnol. 15: 640-645
  3. Huang, F., S. F. Haydock, T. Mironenko, D. Spiteller, Y. Li, and J. B. Spencer. 2005. The neomycin biosynthetic gene cluster of Streptomyces fradiae NCIMB 8233: Characterization of an aminotransferase involved in the formation of 2- deoxystreptamine. Org. Biomol. Chem. 3: 1410-1419 https://doi.org/10.1039/b501199j
  4. Kharel, M. K., B. Subba, D. B. Basnet, J. S. Woo, H. C. Lee, K. Liou, and J. K. Sohng. 2004. A gene cluster for biosynthesis of kanamycin from Streptomyces kanamyceticus: Comparison with gentamicin biosynthetic gene cluster. Arch. Biochem. Biophys. 429: 204-214 https://doi.org/10.1016/j.abb.2004.06.009
  5. Kieser, T., M. J. Bibb, M. J. Buttner, K. F. Chater, and D. A. Hopwood. 2000. Practical Streptomyces Genetics. John Innes Foundation, Norwich, U.K
  6. Kudo, F., Y. Hosomi, H. Tamegai, and K. Kakinuma. 1999. Purification and characterization of 2-deoxy-scyllo-inosose synthase derived from Bacillus circulans: A crucial carbocyclization enzyme in the biosynthesis of 2-deoxystreptamine-containing aminoglycoside antibiotics. J. Antibiot. 52: 81-88 https://doi.org/10.7164/antibiotics.52.81
  7. Kudo, F., M. Numakura, H. Tamegai, H. Yamamoto, T. Eguchi, and K. Kakinuma. 2005. Extended sequence and functional analysis of the butirosin biosynthetic gene cluster in Bacillus circulans SANK 72073. J. Antibiot. 58: 373-379 https://doi.org/10.1038/ja.2005.47
  8. Kudo, F., Y. Yamamoto, K. Yokoyama, T. Eguchi, and K. Kakinuma. 2005. Biosynthesis of 2-deoxystreptamine by three crucial enzymes in Streptomyces fradiae NBRC 12773. J. Antibiot. 58: 766-774 https://doi.org/10.1038/ja.2005.104
  9. Kwon, Y. J. 2006. Studies on the binding affinity of aminoglycoside antibiotics to the HIV-1 Rev responsive element for designing potential antiviral agents. J. Microbiol. Biotechnol. 16: 109-117
  10. Lee, S.-K., J.-W. Park, S.-R. Park, J.-S. Ahn, C.-Y. Choi, and Y. J. Yoon. 2006. Hydroxylation of indole by PikC cytochrome P450 from Streptomyces venezuelae and engineering its catalytic activity by site-directed mutagenesis. J. Microbiol. Biotechnol. 16: 974-978
  11. Litovchick, A., A. Lapidot, M. Eisenstein, A. Kalinkovich, and G. Borkow. 2001. Neomycin B-arginine conjugate, a novel HIV- 1 Tat antagonist: Synthesis and anti-HIV activities. Biochemistry 40: 15612-15623 https://doi.org/10.1021/bi0108655
  12. Liu, X., J. R. Thomas, and P. J. Hergenrother. 2004. Deoxystreptamine dimers bind to RNA hairpin loops. J. Am. Chem. Soc. 126: 9196-9197 https://doi.org/10.1021/ja048936l
  13. Li, Y., N. M. Llewellyn, R. Giri, F. Huang, and J. B. Spencer. 2005. Biosynthesis of the unique amino acid side chain of butirosin: Possible protective-group chemistry in an acyl carrier protein-mediated pathway. Chem. Biol. 12: 665-675 https://doi.org/10.1016/j.chembiol.2005.04.010
  14. Llewellyn, N. M. and J. B. Spencer. 2006. Biosynthesis of 2-deoxystreptamine-containing aminoglycoside antibiotics. Nat. Prod. Rep. 23: 864-874 https://doi.org/10.1039/b604709m
  15. Park, N.-S., H.-J. Park, K. Han, and E.-S. Kim. 2006. Heterologous expression of novel cytochrome P450 hydroxylase genes from Sebekia benihana. J. Microbiol. Biotechnol. 16: 295-298
  16. Patricia, M. F. and T. Mahmud. 2006. Biosynthesis of aminocyclitol-aminoglycoside antibiotics and related compounds. Nat. Prod. Rep. 24: 358-392 https://doi.org/10.1039/b603816f
  17. Rinehart, K. L., J. M. Malik, R. S. Nystrom, R. M. Stroshane, S. T. Truitt, M. Taniguchi, J. P. Rolls, W. J. Haak, and B. A. Ruff. 1974. Carbon-13 as a biosynthetic tool. IV. Biosynthetic incorporation of glucosamine-1-$^{13}C$ and glucose-6-$^{13}C$ into neomycin. J. Am. Chem. Soc. 96: 2263-2265 https://doi.org/10.1021/ja00814a053
  18. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
  19. Seo, M.-J., E.-M. Im, D. Singh, A. Rajkarnikar, H.-J. Kwon, C.-G. Hyun, J.-W. Suh, Y.-R. Pyun, and S.-O. Kim. 2006. Characterization of D-glucose $\alpha$-1-phosphate uridylyltransferase (VldB) and glucokinase (VldC) involved in validamycin biosynthesis of Streptomyces hygroscopicus var. limoneus KCCM 11405. J. Microbiol. Biotechnol. 16: 1311-1315
  20. Stead, D. A. and R. M. E. Richards. 1997. Sensitive highperformance liquid chromatography assay for aminoglycosides in biological matrices enables the direct estimation of bacterial drug uptake. J. Chromatogr. B 693: 415-421 https://doi.org/10.1016/S0378-4347(97)00032-7
  21. Sthapit, B., T.-J. Oh, R. Lamichhane, K. Liou, H. C. Lee, C. G. Kim, and J. K. Sohng. 2004. Neocarzinostatin naphthoate synthase: An unique iterative type I PKS from neocarzinostatin producer Streptomyces carzinostaticus. FEBS Lett. 556: 201-206
  22. Subba, B., M. K. Kharel, H. C. Lee, K. Liou, B. G. Kim, and J. K. Sohng. 2005. The ribostamycin biosynthetic gene cluster in Streptomyces ribosidificus: Comparison with butirosin biosynthesis. Mol. Cells 20: 90-96
  23. Sztaricskai, F. 2001. The fight against bacteria: The antibiotics policy. Acta Pharm. Hung. 71: 89-98
  24. Tok, J. B., L. J. Dunn, and R. C. Des Jean. 2001. Binding of dimeric aminoglycosides to the HIV-1 rev responsive element (RRE) RNA construct. Bioorg. Med. Chem. Lett. 11: 1127-1131 https://doi.org/10.1016/S0960-894X(01)00149-4
  25. Woo, P. W. K., H. W. Dion, and Q. R. Bartz. 1971. Butirosins A and B, aminoglycoside antibiotics. III. Structures. Tetrahedron Lett. 12: 2625-2628 https://doi.org/10.1016/S0040-4039(01)96935-7
  26. Xue, Y., L. Zhao, H. W. Liu, and D. H. Sherman. 1998. A gene cluster for macrolide antibiotic biosynthesis in Streptomyces venezuelae: Architecture of metabolic diversity. Proc. Natl. Acad. Sci. USA 95: 12111-12116
  27. Zhao, X. Q., K. R. Kim, L. W. Sang, S. H. Kang, Y. Y. Yang, and J. W. Suh. 2005. Genetic organization of a 50-kb gene cluster isolated from Streptomyces kanamyceticus for kanamycin biosynthesis and characterization of kanamycin acetyltransferase. J. Microbiol. Biotechnol. 15: 346-353