Application of rDNA-PCR Amplification and DGGE Fingerprinting for Detection of Microbial Diversity in a Malaysian Crude Oil

  • Liew, Pauline Woan Ying (Agrotechnology and Biosciences Division, Malaysian Nuclear Agency (Nuclear Malaysia) Bangi) ;
  • Jong, Bor Chyan (Agrotechnology and Biosciences Division, Malaysian Nuclear Agency (Nuclear Malaysia) Bangi)
  • Published : 2008.05.31

Abstract

Two culture-independent methods, namely ribosomal DNA libraries and denaturing gradient gel electrophoresis (DGGE), were adopted to examine the microbial community of a Malaysian light crude oil. In this study, both 16S and 18S rDNAs were PCR-amplified from bulk DNA of crude oil samples, cloned, and sequenced. Analyses of restriction fragment length polymorphism (RFLP) and phylogenetics clustered the 16S and 18S rDNA sequences into seven and six groups, respectively. The ribosomal DNA sequences obtained showed sequence similarity between 90 to 100% to those available in the GenBank database. The closest relatives documented for the 16S rDNAs include member species of Thermoincola and Rhodopseudomonas, whereas the closest fungal relatives include Acremonium, Ceriporiopsis, Xeromyces, Lecythophora, and Candida. Others were affiliated to uncultured bacteria and uncultured ascomycete. The 16S rDNA library demonstrated predomination by a single uncultured bacterial type by >80% relative abundance. The predomination was confirmed by DGGE analysis.

Keywords

References

  1. Ahn, J. H., M. S. Kim, M. C. Kim, J. S. Lim, G. T. Lee, J. K. Yun, T. Kim, T. Kim, and J. O. Ka. 2006. Analysis of bacterial diversity and community structure in forest soils contaminated with fuel hydrocarbon. J. Microbiol. Biotechnol. 16: 704-715
  2. Aitken, C. M., D. M. Jones, and S. R. Larter. 2004. Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature 431: 291-294 https://doi.org/10.1038/nature02922
  3. Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402 https://doi.org/10.1093/nar/25.17.3389
  4. Amann, R. I., W. Ludwig, and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143-169
  5. Atlas, R. M. and R. Bartha. 1992. Hydrocarbon biodegradation and oil-spill remediation. Adv. Microb. Ecol. 12: 287-338
  6. Atlas, R. M., A. Horowitz, M. Krichevsky, and A. K. Bej. 1991. Response of microbial populations to environmental disturbance. Microb. Ecol. 22: 249-256 https://doi.org/10.1007/BF02540227
  7. Beguin, P., S. Chauvaux, I. Miras, A. Francois, F. Fayolle, and F. Monot. 2003. Genes involved in the degradation of ether fuels by bacteria of the Mycobacterium/Rhodococcus group. Oil Gas Sci. Technol. Rev. IFP 58: 489-495 https://doi.org/10.2516/ogst:2003032
  8. Clemente, A. R., T. A. Anazawa, and L. R. Durrant. 2001. Biodegradation of polycyclic aromatic hydrocarbons by soil fungi. Brazilian J. Microbiol. 32: 255-261 https://doi.org/10.1590/S1517-83822001000400001
  9. Ekundayo, E. O. and C. O. Obuekwe. 2000. Hydrocarbon utilization in yeast isolates found to grow in association with petroleum in a polluted ultisol of Midwestern Nigeria. Environ. Monit. Assess. 63: 381-387 https://doi.org/10.1023/A:1006285526313
  10. Jain, R. K., M. Kapur, S. Labana, B. Lal, P. M. Sarma, D. Bhattacharya, and I. S. Thakur. 2005. Microbial diversity: Application of microorganisms for the biodegradation of xenobiotics. Curr. Sci. 89: 101-112
  11. Jong, B. C., B. H. Kim, I. S. Chang, P. W. Y. Liew, Y. F. Choo, and G. S. Kang. 2006. Enrichment, performance, and microbial diversity of a thermophilic mediatorless microbial fuel cell. Environ. Sci. Technol. 40: 6449-6454 https://doi.org/10.1021/es0613512
  12. Juhasz, A. L. and R. Naidu. 2000. Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: A review of the microbial degradation of benzo[a]pyrene. Int. Biodeter. Biodegrad. 45: 57-88 https://doi.org/10.1016/S0964-8305(00)00052-4
  13. Katsivela, E., E. R. B. Moore, D. Maroukli, C. Strömpl, D. Pieper, and N. Kalogerakis. 2005. Bacterial community dynamics during in-situ bioremediation of petroleum waste sludge in landfarming sites. Biodegradation 16: 169-180 https://doi.org/10.1007/s10532-004-4883-y
  14. Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120 https://doi.org/10.1007/BF01731581
  15. Krivobok, S., E. Miriouchkine, F. Seiglemurandi, and J. L. Benoit-Guyod. 1998. Biodegradation of anthracene by soil fungi. Chemosphere 37: 523-530 https://doi.org/10.1016/S0045-6535(98)00067-8
  16. Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinfor. 5: 150-163 https://doi.org/10.1093/bib/5.2.150
  17. Lane, D. J. 1991. 16S/23S rRNA sequencing, pp. 115-175. In E. E. Stackebrandt and M. Goodfellow (eds.), Nucleic Acid Techniques in Bacterial Systematics. John Wiley & Sons, Chichester
  18. Lopez-Archilla, A. I., A. E. Gonzalez, M. C. Terrón, and R. Amils. 2004. Ecological study of the fungal populations of the acidic Tinto River in southwestern Spain. Can. J. Microbiol. 50: 923-934 https://doi.org/10.1139/w04-089
  19. Lord, N. S., C. W. Kaplan, P. Shank, C. L. Kitts, and S. L. Elrod. 2002. Assessment of fungal diversity using terminal restriction fragment (TRF) pattern analysis: Comparison of 18S and ITS ribosomal regions. FEMS Microbiol. Ecol. 42: 327-337 https://doi.org/10.1111/j.1574-6941.2002.tb01022.x
  20. Muyzer, G., E. C. de Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700
  21. Nyman, J. A. 1999. Effect of crude oil and chemical additives on metabolic activity of mixed microbial populations in fresh marsh soils. Microb. Ecol. 37: 152-162 https://doi.org/10.1007/s002489900139
  22. Park, S. J., C. H. Kang, and S. K. Rhee. 2006. Characterization of the microbial diversity in a Korean solar saltern by 16S rRNA gene analysis. J. Microbiol. Biotechnol. 16: 1640-1645
  23. Pelletier, D. A. and C. S. Harwood. 1998. 2- Ketocyclohexanecarboxyl coenzyme A hydrolase, the ring cleavage enzyme required for anaerobic benzoate degradation by Rhodopseudomonas palustris. J. Bacteriol. 180: 2330-2336
  24. Roling, W. F. M., I. M. Head, and S. R. Larter. 2003. The microbiology of hydrocarbon degradation in subsurface petroleum reservoirs: Perspectives and prospects. Res. Microbiol. 154: 321-328 https://doi.org/10.1016/S0923-2508(03)00086-X
  25. Sanchez, O., I. Ferrera, N. Vigues, T. G. de Oteyza, J. O. Grimalt, and J. Mas. 2006. Presence of opportunistic oildegrading microorganisms operating at the initial steps of oil extraction and handling. Int. Microbiol. 9: 119-124
  26. Sanders, H. L., J. F. Grassle, G. R. Hampson, L. S. Morse, S. Garner-Price, and C. C. Jones. 1980. Anatomy of an oil spill: Long-term effects from the grounding of the barge Florida off West Falmouth, Massachusetts. J. Mar. Res. 38: 265-380
  27. Saul, D. J., J. M. Aislabie, C. E. Brown, L. Harris, and J. M. Foght. 2005. Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antartica. FEMS Microbiol. Ecol. 53: 141-155 https://doi.org/10.1016/j.femsec.2004.11.007
  28. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic. Acids Res. 22: 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  29. Tiehm, A. and S. Schulze. 2003. Intrinsic aromatic hydrocarbon biodegradation for groundwater remediation. Oil Gas Sci. Technol. Rev. IFP 58: 449-462. https://doi.org/10.2516/ogst:2003028
  30. Tongpim, S. and M. A. Pickard. 1999. Cometabolic oxidation of phenanthrene to phenanthrene trans-9,10-dihydrodiol by Mycobacterium strain S1 growing on anthracene in the presence of phenanthrene. Can. J. Microbiol. 45: 369-376 https://doi.org/10.1139/cjm-45-5-369
  31. Wang, Z., J. Li, A. E. L. Hesham, S. He, Y. Zhang, Z. Wang, and M. Yang. 2007. Co-variations of bacterial composition and catabolic genes related to PAH degradation in a produced water treatment system consisting of successive anoxic and aerobic units. Sci. Total Environ. 373: 356-362 https://doi.org/10.1016/j.scitotenv.2006.11.020
  32. Wu, J. C. 1999. U.S. Geological Survey Minerals Yearbook - The Mineral Industry of Malaysia. pp. 14.1-14.7