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NUMERICAL SOLUTION FOR ROBOT ARM PROB_LEM
USING LIMITING FORMULAS OF RK(7,8)

S. SENTHILKUMAR

ABSTRACT. The aim of this article is focused on providing numerical so-
lutions for system of second order robot arm problem using the RK-eight
stage seventh order limiting formulas. The parameters governing the arm
model of a robot control problem have also been discussed through RK-
eight stage seventh order limiting algorithm. The precised solution of the
system of equations representing the arm model of a robot has been com-
pared with the corresponding approximate solutions at different time in-
tervals. Results and comparison show the efficiency of the numerical in-
tegration algorithm based on the absolute error between the exact and
approximate solutions. Based on the numerical results a thorough compar-
1son is carried out between the numerical algorithms.
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1. Introduction

Extensive research work is still being carried out on variety of aspects in the
field of robot control, especially about the dynamics of a robotic motion and
their governing equations. The dynamics of robot arm problem was initially
discussed by Warwick and Pugh [22]|. Research in this area is still active and its
applications are enormous. This is because of its nature of extending accuracy
in the determination of approximate solutions and its flexibility. Said Oucheriah
[15] discussed 'Robust Tracking and Model Following the Uncertain Dynamic
Delay Systems by Memoryless Linear Controllers’. David Lim and Homayoun
Seraji [13] discussed ’Configuration Control of a Mobile Dexterous Robot’. Poly-
carpou and Loannou [17] discussed about a 'Robust Adaptive Non-linear Control
Design’. Hariharan Krishnan and Harris Mcclamroch [12] presented with the Ap-
plications of Non-linear Differential Algebraic Control Systems to Constrained
Robot Systems’ and Zluhua Qu [23] analyzed 'Robust Control of a class of Non-
linear Uncertain Systems’. Because of the-linear and coupled characteristics
nature, the design of a robot control system is made complex.

The dynamics of a robot can be described by a set of coupled non linear
equations in the form of gravitational torques, coriolis and centrifugal forces.
The significance of these forces is dependent in the physical parameters of the
robot, the load it carries and the speed at which the robot operates. If accuracy
is required then compensation for these parameter variations and disturbances
becomes much more serious. Therefore, the design of the control system be-
comes much more complex. The theory of Variable Structure System (VSS) is
developed and applied to solve wide variety of applications in the control process
essentially; it is a system with discontinuous feedback control. Operating such
a system in sliding mode makes it insensitive to parameter variations and dis-
turbances.

Runge-Kutta (RK) methods are being applied to compute numerical solutions
for the problems, which are modelled as Initial Value Problems (1VPs) differen-
tial equations by Alexander and Coylc [1], Evans 8], Hung [11], Shampine and
Watts {19][20]. Runge-kutta methods have become very popular, both as com-
putational techniques as well as subject for research, which were discussed by
Butcher [4][5][6] and Shampine [19][20]. This method was derived by Runge and
extended by Kutta to solve differential equations efficiently which are equivalent
of approximating the exact solutions by matching 'n’terms of the Taylor series
expansion | -

Runge-Kutta algorithms are considered as a excellent too!l for the numerical
integration of Ordinary Differential Equations (ODEs) because of self-starting
in behavior, easy programming, and illustrate extreme accuracy and versatility
in ODE problems. The most exciting developments in the RK usage is that
by judicious re-arrangement of interim values of the RK predictor to obtain a
second predictor of one order less. The two equations are generally referred to
as an RK pair. Fehlberg [9] was the first to propose on- theoretical grounds that
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the difference between the two predictors would be directly proportional to the
Local Truncation Error (LTE). The unusual success of the Fehlberg approach was
addressed in the popular text by Forsythe et al[10]. The LTE is then used as a
test to see whether a ’step has been successful, and if not, the step size is reduced
(usually halved) until the LTE passes the tolerance requirement. The benefit of
the RK pair is that it requires no extra function evaluations, which is the most
time consuming aspect of all ODE solvers. This breakthrough initiated a search
for the RK algorithms of higher and higher order and better error estimates.

Butcher [4][5][6] derived the best RK pair by all statistical measures appeared
to be the RK algorithm and also an error estimate was given. The RK-Butcher
algorithm is nominally considered sixth order since it requires six function eval-
uations, but in actual practice the 'working order’ is five but still exceeds all the
other algorithms examined including RK-Fehlberg, RK-Centrodial mean and
RK-Arithmetic mean. -

Morris Bader [2}{3] introduced the RK-Butcher algorithm for finding the trun-
cation error estimates and intrinsic accuracies and the early detection of’ stiffness
in coupled differential equations that arises in theoretical chemistry problems.
For the purpose of solving the initial-value problem, well established Single Step
methods of numerical integration techniques are used by Ponalagusamy and
Senthilkumar (18].

It is well known that RK-eight stage explicit limiting formulas are of order at
most six. However, by taking the limit as the first abscissa approaches zero, the
formulas can achieve seventh order. Such formulas are called limiting formulas
which require the evaluations of the second derivatives of the solution. The
possible order of s-stage explicit Runge-Kutta methods is s-1 for s = 5,6,7
but, they can achieve sth order in the limiting case where distance between
some pairs of abscissas approaches zero. Such formulas are known as s-stage
sth order limiting formulas. Harumi Ono [16] discussed five stage five order and
six stage sixth order limiting formulas and also presented five stage six stage
formulas of orders numerically five and six. They are obtained by replacing
the second derivatives involved in the limiting formulas with simplest numerical
differentiation. The reason to perform is that the second derivatives in the
limiting formulas does not need full significant figures carried in computation
and the user can choose free parameters so as to minimize the error caused by
numerical differentiation. Devarajan Gopal, et. al.,[?] have discussed about the
numerical solution of system of second order robot arm problem using RK-fifth
order. In this article, the robot arm problem is solved with different approach
using the algorithms such as RK-Fifth order, RK-Sixth order and the RK-Eight
stage seventh order limiting formulas {21} to yield higher accuracy with less error.

2. RK-Sixth order algorithm

The RK-Sixth order algorithm is an explicit method discussed by Ponala-
gusamy and Senthilkumar [18]. The increase of the state variable z is stored in
the constant k;. This result is used in the next iteration for evaluating k5. The
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same procedure must be repeated to compute the values of k3, k4, k5 and kg and
k7. The normal order of an RK algorithm is the approximate number of leading
terms of an infinite Taylor series, which calculates the trajectory of a moving
point, which was discussed by Shampine and Gordon {20]. The remainder of the
infinite sum excluded is referred to as the LTE. RK algorithms are forward look-
ing predictors, that is, they use no information from preceding steps to predict
the future position of a point. For this reason, they require a minimum number
of input data which are very easy to program and simple to use.
The general s-stage RK method for solving an Initial Value Problem is -

y' = f(z,9) e

with the initial condition y(zg) = yo is defined by where y,41 = yn+h Z‘::l bk
where k; = f(zn) + cih,yn + R > ., aijki and ¢; = >, ai;,1 = 1,2,.., 5 with
c and b are s—dimensional vectors and A(a;;) be the s x s matrix. Then the
Sixth-order array is of the form,

C1 amn
C2 Q21 a2y

C3 @31 az2 033
Cs asi g2 ...0s5-] as:g
by ba.. bs—1 b |
then the R.K-sixth—order algorithm of the above Eq_liation 2.1 is of the form
= h’f(xnayn)s. |
k1 )

| 1
kz-:hf(xn ,y.,,+--22;c |

4k
ks =hf(@n+ =, Yn + — + —=

dki=hf(z ? 7_%._ 22 )
ke = h § 33?1:1 g5k2 35k3 15k4_ -
s = i@ 4 36 | 48 -+ )’_ o
_ hie 9 __.}E__i; _ 8);- - o
— hf(zn f: 31619 2’3&2 §3k3 11&2 32k5 N 8336) -_

x 156 195 .
' (2.2)
The formation of the RK-sixth-order array equa,tlon (2.2) takes form as fol-
lows: |
13k1 11k3 | 11k4 4ks 4ks = 13ky
200+ 40_+-40 +25+25+200)“

Un+1 = yn+[
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0

11

2 3

2 2 4

59 9 |

1 1 2 =1

3 36 9 12

s 39 =% -3 15

6 144 36 48 8

p 1 At -1 L

6 360 36 8 2 10

, -4 22 43 -8 32 80
260 13 156 30 195 39
13 0 1 11 4 4 1B
200 40 40 25 25 200

3. Stability analysis

We take the test equation § = Ay where ) is a complex constant and it is
used to determine the stability region of the RK-Sixth order method.

{

|

|

{

I

hf(mna yn) = AUn,

1 hk Mh
hf(xn + 5 Un + -—2—1) = Ayn(1l + —5—),
| y 2%k 4dks I\ 4N Ah
h n —yUn —_— —_— = n -
f@nt 3,00 + ==+ —37) = A1+ == +) =~ (1 + )]
1 Tk 2ko k3
hf(a’”Jr3’:""""+§6_+ 9 —12)’ |
AR 2)\R M. M oAk 4)\h Mh
Aynfl + 36 + 5 (1+ 2)— 12(1+ 5 + 5 (1+—2—))]
5 35k, 55ks  35ks3 15k4
hf@ntetn— S~ 35 T 28 T8 )

35\ 55\h,  Ah.  35Mh,. 2)h

Aall - T — 551+ )+ -1+ ) +
R+ 3)
Mall + 2~ T4 B 4 200 2y B 2 o

Ah TAh  2X\h,. M, Mh,.  2\h.  4Mh . AR

Ut gg F 5 Ut -l 5
Ah .. 35Mh 55\h A, 35\h 9Ah  4M\h,. Ak
00 " Tar " ap Gt )t g Ut g+ 5+ )

15Ah TAh  2MAh Ah Ah 2A\h  4)\h Ah
Hg— (At 5=+ ==+ 5) - 5+ ==+ =1+ 5)))]
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Alk, 22k, 43ks 118ks 32ks  80ks
hf(@nthyn = e+ T3t 156 ~ 39 T 195 T 39

a1 + 4215\012 B 221;h(1 + )\2h)+ %(1_{_ 23h 4 4gh(1 + _)_\22)) 3
11§;\h(1+7;6h+23h( _)_%(H 23h+43h(1+&)))+
3126\5}1(1_%)_% ) 35Ah( +23h)+£\§(1+_)+
158)\h(1 + '_7:_3% _2_2_\_!1(1 Azh))

)1\_3(1+ 2gh @(1 )) _ 80)\h(1+ 3)\6%
1%%+?%Xuﬁ¥ ﬂm + 5+

TAh 2M\h Ah Ah 2)\h 4 \h . Ah

_(1 T T M) R+ A+
35Ah 55Ah Ah
(1* 144" 36 (H?)
35)\h, 2\h  4)\h 15Ah TAh
t—g I+t 5+ -0 +—)))) (1+_§6_
2\h 2\h 4 \h
+—ﬂ+%~%u—mn—4u—mu
hx  11hA hA hA 2h/\ 4h/\ )\ -
On substituting z = hA, we have
=hf(Zn,yn) = A%}zk
1
kg—hf(mn ,yn+-—-l-)—)\yn(1+ =)
3 4k, 2 2zh
ks = hf(zn+ =, yn + = + )—Ayn(l 5 ) (1+ )
{ 72 ot -_
ks =hf(zn + Z,yn + + ) :
7zh3 2zh 36 z gzh. 122zh dzh . zh
= Mn(l+ 5o +) 51+ 5 — =1+ S+ =14+ &
Ty Vsl | e
5 35k 35k3 5k4
ks—hf(xn 1 Yn — 44 — + 8 + ):
35z§t 55z& 35;}; 2zh - o
= Ayn(1l — % 1,3? (1+% 49 (1+ ) S
4zh " 2zh 4zh h
+"‘°‘*<1+—>+ - %‘ "’"<l+“>—1 ey
% k1 11%:: 365- '
- h’f(mﬂ “rYn — )
6 360 %
zh [ 11zh 2z
= Ayn(l + 525-) 1+~—+ (+————
4zh 362]1 36 %zh 18 2zh 0
,+-§—(1+7)+ (1+'§6—)+T(1 '-—')—— __
2zh 4z zh 352:h 55zh .  zh, 35zh 2zh
B R R S e
Z < 2 2 Z 4
< 222y — Lo =1+ 2=
o+ I+ R0+ 2+ a2 - By 22 4 (+)

(3 1)



Numerical solution for robot arm problem 799

41k:1 22k2 43k3 118k4 32k‘5 80k5

=hf(zn+h,yn — =
41zh 223 z)%3 43:316 22% 4:3;5 g
= Ma(1+ 5 1 e (14 =) + —5- 1+—-—)
118zh 232h zh z% 2zh 4zh zh
— (1+ 6 -—--—) ———(1+—2~)+
3§zh 3gzh 5% %5zh 2zh 4zh
o5 1~ a7~ +9)+9(+_2"
| 2, j(lzﬁ (M@ 2
880zh 11zh gzh Z?zh |
zh3g 7zh360)2*h, 36 (zh )h 4822h 94 h J zlh+ _)+ I
z z z
U )T S 5~ S0 5+ TR0 P
3 ' 4zh h
(1 5Z”'(1+—)+35‘?’h1+g-25-}f)+ iy, 2k,
igzh L 4 6 zﬁ8 zhg zh2
k 1+—“)+“—§*( ——)—ﬁ )+ 9(1+?)

Therefore, the final integration is a weighted sum of the six calculated deriv-
atives a,nd the RK-sixth-order predictor formula is given by,
13ky  11ks  11k4 4ks 4ke = 13k7
200+ 40 T 40 +25+25+200)
Substituting the values of ky, k2, k3, k4, ks, ke and k7 into equation (3.2) we get,

Yn+1 = Yn + Al (3.2

A\ - | |
Untl = Un+ 2138 (2160+ 2160z + 1080z°+3602° +902* +182°+32° — 2") (3.3)
From equation (3.3),the stability of the polynomial Q(z) = y;“ becomes
2 3 4 5 6 7
Q) =142+ +2 42 2 4 2 2 (3.4)

2 6 24 120 720 2160

In a similar manner, the stability polynomial for the test equation y = Ay (A
is a complex constant) using the RK-fifth order method has been obtained as

2 2,3 214 25 ZG

Z .
=1 24 EZ L2 (35
D) =142+ 5+ 5+ 53+ 20+ 510 )

4. RK-Eight stage seventh order limiting formulas

g .
Let us consider an initial value problem = - = f(t, ), z(t ) = xo where f

and z are vectors and f is assumed to be differentiable sufficiently often for the
definition to be meaningful. The parameters of an s-stage explicit Runge-Kutta
method are represented in the following Butcher array {5].

1 Qi1
C2 4az21 Q22

C3 d4a3zr azy ass
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Cs Qg1 QA2 ...05-1 _ass
by ba... bs1 by

and x; is used to denote the x ordinate at the abscissa ¢; namely,

1—1 _
Ti = ZITn+ h E a,-jfj
i=1

where
fl - tnymn'a fi = f(tn + C‘ih’y xi)ai = 21“73
Using them, the method can be written as

Tntl = In +hi bifi

i=1
Many RK-eight stage sixth order formulas that uses are known [21] and [16} and

their properties are precisely reported [21]. An eight stage limiting formula that
uses the values of the second derivatives at the point (¢,,x,) is of the form

fl = f(tnaxn)a
fo = D(f(tn,zn))u(f(1))
T3 Tn + h(azif1 + has fo)

fa = f(ta +c3h,z3)) |
i—1

T; = Zn+h(aafri+ Zaijfj + ha; fa)
j=3

fi = f(tn+cz-h,a¢,-)),z' =4,5,...,8

8 |
Tnt1 = o +h(bLfi + ) _bifi + hB2f2) (4.1)
3=3 |
where D(f(tn,zn)) and u(f;) denote the Jacobian matrix of f at the point
(tn,Zn) and the vector (1, f}, f2,..., f1)7T respectively (the superscripts denote
the component numbers). The parameters of this limiting formula can be written
in the following array analogous to Butcher array.

c3 a3 | . as
C4 a41 @43 - Q4
Cs asi ass as4 | Qs
Cs asi asg3a | agqa Qg7 asg

by b3 by by P2
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4.1.0rder conditions. We restrict ourselves to the case that Cgs = 1,65 = 0
and the following simplifying assumptions hold:

3
a3 — "'é" (42)

1—1 2
S aijej+ai= % (i = 4,5,8) (4.3)
3=3

i—1 3 '

Sad=%, (=458 (4.4

3=3

Comparing the Taylor series expansion for (4.1) with that of the true value
z(t, + h) and matching the coefficients of each elementary differential, after

tedious computations, one may get the following equations of conditions for
seventh order accuracy: |

i—1
a3 =C3,,a,;1+Za1;j =¢, 1=4,5..,8 (4.5)
=3
8
Z biaij = bj(1 —¢;), 1=4,5,..,7 (4.6)

i=j+1

8
ZbiaiS =0 I (4.7)
i=4 -

8  i~-1 -1 B
Z b Z Qij Z ajkars = 0 (4.8)

i=6 i=5 k=4 | -

8 t—1
Z b,‘ Z ai;CjA453 = 0 (4.9)
i=5 j=4 | :

8 '-
1=4 ' _
8 | 1
Y bici+ B2 = 5 (411
- - 8 _ 1 ' :
Y bid =5 (4.12)
: 3 -
Ci=4
8 i-l ST o
9 . B

Z izaijCj = -]--§ | . (413)

i=5 3=4 _

8 © i—-1

Z'bi Zaijc? = 21—0 | | (414)
1=5 ' '

=4
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8 8 i—1
1
D obiY ais ) ayci = o (4.15)
i=6 j=5 k=4
8 i-1
1
> b Y e = o 410
i=5 j=4
8 i—1 1—1
Z i Qi Za,kjck 120 )
1=6 =5 k=4
8 i—1 i—1 k—1 , !
Z i aqij ZG.jk Zak;c; = 3—60- (4.18)
i=7 j=6 k=5 1=4
8 i—1
S g = & (4.19)
Z * aijC; 42
t=5 J=4
8 i—1 i—1 .
b3 a3 azech = 5 4.20)
> *Z%Z%kck—'ﬁa (4.
=6 j=5 k=4
8 i—1 i—1 k-1 5 1
y:bf y:aij y:ajk Zakick = 310 (4.21)
=7 j=6 k=5 (=4
8 j-1
5Y ey Y ajed = — (4.22)
Z t AijCy QjkCk 168 .
i=6 j=5 k=4

Solving Eugations (4.5-4.22), the values of the parameters are obtained. For
more detail, refer the book written by Mitsui [14]. The RK-Eight stage Seventh
order limiting algorithm is an explicit method which is given as follows [16].

(7 =7 (zis(nr))
ij ’ 7"3?
ky' =71 (2ii(n7) + )

22979k% N 33275@3')

100842 ' 201684 y y
25760306k,  11585024k3 2139752k

k;j = 7f'(zi5(n7) +

k7 = 7f (zi5(nT) + )

fgggzifggk j 2%25%68%7’5 | 3792?6?1%%53' 19000k
. . 1 1 1 1 1

Vol 1 _ 2 3 4

ks =1f(@s(n7) + —greogoz7s -~ ~ 25725 T 25788135 | 288827
K9 = (s (nr) — 34346067405574k} | |

& * - 580779387890625 ..

605933632k5  306126104994304k5 49440496k 1168031718k

B 91822828125 K780137717578125 3893987515 76431573125
ij ; 14843299131371::'1"’ 235840’6;3
ki = 1f(zi5(nt) ~ -

901007140480 . 196049
2356095077990864k5  170270078125k7

260700167802285 | 378771628384,
16765288525k  935180524328125k

; t 1576329984 + 256363606146816

(4.23)



Numerical solution for robot arm problem 803

Therefore, the final integration is a weighted sum of the seven calculated
derivatives which is given below.

{ 8835k 24748509184k
< z;((n+1)7) = 235 () + (J5a76  ~60210933037 )
6640625k7 | 951125k7 57826510140625K7
\ 86062944 | 363004 ' 21093765402112

(4.24)
where f(.) is computed according to given function.

5. Robot arm model and essential of variable structure

5.1. Robot arm model. The dynamics of robot arm problem was discussed
by Warwick and Pugh [22]. It can be represented in the following form.

T = A(Q)Q+ BQ,Q +C(Q) (5.1)

where A(Q) is the coupled inertia matrix,B(Q, Q) is the matrix of coriolis and

centrifugal forces. C(Q) is the gravity matrix, T is the input torques applied at
various joints.

For a robot with two degrees of freedom, assuming lumped equivalent massless
links, the dynamics are represented by

T) = D11G1 + Dyags1 + Dia2(d2)* + D112(g1g2) + Dy (5.2)

Ty = Da1Gy + Dazga + D122(1)? + Do | (5.3)

where D) = (Ml + Mz)d% + 2M>sddg COS((]Q), Dyo = (Mg)d% + Modyds COS(QQ),
Dy2 = D31, Doyp = Madi, Dy = —2Madidssin{(gs),
D32 = —~Madidy sin(qz), Dain = Diaa,
Dy = {(M1 + Mz)d; sin(qy) + Mada sin(qy + g2)g}, D1 = (Madz sin(q1 + g2)g.

X = (X1, X2, X3, X4)T = (@1 — q1a,61,92 — 924, G2)" (5.4)

where ¢, and ¢ are the angles at joints 1 and 2 respectivey and q14 and gaq

are constants . Hence, equations (5.2) and (5.3) may be written in state space
representation as

(L) = T2 |

; Zp = 232(Dyyo7% + D112 X2 X4 + D1 + Th) — B2(Dann X7 + Do + T3)
1153 = T4

| %4 = =212(Dy2022% + D112 X2 X4 + D1 + Th) — B32(Da1 X3 + D2 + T2)

- (5.5)
A synthesis of the control law would be very difficult because of the nonlinear

and interactive nature of the canonical equations (5.5). Hence they should be
reduced to a linear form.
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9.2. Reduction of robot dynamics to a second-order linear systems.
Although the physical and mathematical structure of the complete dynamic
robot model are analytically coupled and non-linear, the transient responses of
the robot dynamics appear to resemble the transient responses of linear systems.
Consequently, each joint of the robot can be characterized as a single-input
single-output system (SISO). The input is the actuator torque (or force) and
the output is the joint position. Hence the mathematical model of a robot can
be regarded as a ’'black box’. The input into this black box is the transient
response of a linear model to a step input. The output is the motive forces,
or torques, required by the robot to reproduce responses similar to the linear
model. Samples of the input and output of the black box have been fed into
an identification program which will match a low-order decoupled linear time-
invariant model of the form "

(S) _ B,,S™ + Bm_ISm‘l +..+B1S+ Bo
U(s)  S*+ A, 15" 14+ .. +A,5+ A

The model orders m and n are selected to give the lowest possible order that
will characterize the structure of the mathematical model of the robot. It is found
that the non-linear model equations (5.5) of the two-link-robot-arm model can
be reduced to the following system of linear equations. | -

For two degrees of freedom robot, under the assumption of lumped equlvalent
masses and mass-less links, the dynamics are represented in terms of systems
of non-linear equations and by applying the method of reduction, it has been
represented in terms of the following system of linear equation as:

G(s) = (5.6)

P':17.1 ='$2
N T = By1gTy — Ay122 — Ajox - ) -
< 2 IQ 1 1142 1041 | (57)

| \Tq = BzOTg — A21x4 A20x3
which is of the form | |
| | kz(t) = Az(t) + Bu(t) - (5.8)
where the values of the parameters concerning the joint-1 are given by
Ao = 0.1730, A;; = —0.240, Byo = 0.00265
and the values of parameters concerning the joint -2 are given by
A0 = 0.0438, A3; = 0.3610, Byp = 0.0967
and by choosing T} =1 and T2 = 1 with initial conditions,
[e1(0) 22(0) e3(0) =z4(0))"=[-1 0 -1 0O
and the corresponding exact.solution is given by | |

r(t) — { e0-107¢(1,15317919 cos(0.401934074¢) +

0.306991074 sin(0.401934074¢t)) + 0.15317919 ( . )
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TABLE 1. Solutions of Equations (3.2) and (5.6) for z;(¢)

Sol. No. | Time | Exact Solution | RKAM Solution | RKAM Error
1 0.00 | -1.0000000000 | -1.0000000000 | 0.0000000000
2 0.25 | -0.9936586212 | -0.9953327587 | -0.0016741375
3 0.50 | -0.9742424794 | -0.9786473848 | -0.0044049054
4 0.75 | -0.9412482065 | -0.9494398199 | -0.0081916134
5 1.00 | -0.8942959125 | -0.0073316683 | -0.0130357558
zo(t) = €%197(0.463502099 sin(0.401934074t) + 0.123390173

c0s(0.401934074t)) + €°1°74(—1.15317919
c0s(0.401934074t) + 0.306991074 sin(0.401934074t))

1.029908976e—0-113404416¢ _
€3 (t) =

| | | 5.10
6.904124484¢0-016916839%¢ | 4 874215508 (5.10)

z4(t) = —0.116795962¢ 01134044168 1. 0 116795962¢ 0010916539

6. Numerical solutions of system of second order Cartesian robot
arm model problem: A study and comparison

The discrete and exact solutions of the robot arm model problem are cal-
culated for various time intervals using Equations (3) and (39) and are pre-
sented in Tables 1-4. The values of e;(t), z2(t), es(t) andxs(t) are calculated
for time ¢ arranging from 0.25 to 1. The absolute error between the exact and
discrete solutions for the RK methods based on RK-Fifth-order, RK-Sixth-order
and RK-eight stage seventh order limiting formulas are calculated. For time

t = 0.0,0.25,0.05,0.75 and 1.0 the values are tabulated in Tables 1-4 respec-
tively.

7. Discussions and conclusion

The present article sheds some light on different numerical integration algo-
rithms involved in robot arm model problem. It is pertinent to pin-point out here
that the obtained discrete solutions for the Robot Arm model problem using the
RK-eight stage seventh order limiting formulas gnarantees more accurate values
compared to the RK-Fifth-order method and RK-Sixth-order algorithm. From
the Tables 1-4, we observe that the solution obtained by the RK-eight stage sev-
enth order limiting formulas match well with the exact solutions of the robot arm
model problem but the RK-Fifth Order and RK-Sixth-order algorithm method
yields a little error. Hence, RK-eight stage seventh order limiting formula is
more suitable for studying the system of second order robot arm model problem

and this algorithm can be implemented for any length of independent variable
on a digital computer.
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RK-ButcherSolution

RK-Butcher Error

RK-Sixth Order Solution

-1.0000000000 0.0000000000 -1.0000000000
-0.9953327583 -0.0016741371 -0.9953327581
-0.9786473825 -0.00440 49031 -0.9743245899
-0.9494352670 -0.0081870605 -0.9451413296
-0.9073036550 -0.0130077425 -0.9030901483
RK-Sixth Order RK-Eight stage RK- Eight stage Seven
Error Seven Order Solution | Order Solution Error

0.0000000000 -1.0000000000 0.0000000000

-0.0016741370 -0.9953327574 -0.0016741362
-0.0000821105 ~0.9743245890 -0.0000821096
-0.0038931231 -0.9451413284 -0.0038931219
-0.0087942358 -0.90309 01472 -0.0087942347

TABLE 2. Solutions of Equations (3.2) and (5.6) for z2(t)

Sol. | Time

Exact Solution

RKAM Solution

RKAM Error

0.00

0.0000000000

0.0000000000

0.0000000000

0.25

0.0511410611

0.0459864489

0.0051546122

0.50

0.1045249896

0.0941265859

0.0104450

0.75

0.1596829669

0.1438971697

0.0157857972

] x| el no| =

1.00

0.2161001218

0.1949942351

0.0211058867

| RK-Butcher Solution | RK-Butcher Error | RK-Sixth Order Solution

0.0000000000

0.0000000000

0.0000000000

0.0459864413

0.0051546198

0.0459863413

0.0941265909

0.0104450

0.0940922750

0.1439868497

0.0156961172

0.1439950296

0.1950883237

0.0210117981

0.1966502520

RK-Sixth Order RK-Eight stage RK- Eight stage Seven
Error Seven Order Solution { “Order Solution Errer- | - -
-0.0000000000 0.0000000000 0.0000000000
0.0051546098 0.0459863401 0.005154721
- 0.0051546101 0.0940922739 - 0.0104327157
0.0156879373 0.1439950284 0.0156879385
0.0194498698 0.1966502509 0.0194498709

TABLE 3. Solutions of Equations (3.2) and (5.6) for z3(t)

1 Sol. No. | Time | Exact Solution { RKAM Solution | RKAM Error
1 0.00 { -1.0000000000 -1.0000000000 0.0000000000
2 0.25 | -0.9996516946 -0.9997351600 | -0.0000834654
3 0.50 { -0.9986216177 | -0.9987198532 0.0000982355
4 0.75 | -0.9969317452 -0.9970073822 0.0000756370
5 1.00 | -0.9946034264 -0.9946209249 0.0000174985
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RK-Butcher Solution

RK-Butcher Error

RK-Sixth Order Solution

-1.0000000000 0.0000000000 -1.0000000000
-0.9997057337 0.0000540391 -0.9997056599
-0.9986904291 0.0000688114 -0.9986904092
-0.9969779638 0.0000462186 -0.9969669638

-0.99461 95155

0.00001 60891

-0.99461 60056

RK-Sixth Order RK-Eight stage RK- Eight stage Seven

Error Seven Order Solution | Order Solution Error
0.0000000000 -1.0000000000 0.0000000000
-0.0000539653 -0.9997056585 -0.0000539639
-0.0000687915 -0.9986904080 -0.0000687903
-0.0000352186 -0.9969669627 -0.0000352175
0.0000125792 -0.9946160047 -0.0000125783

TABLE 4. Solutions of Equations (3.2) and (5.6) for z4(t)

Sol. No. | Time | Exact Solution | RKAM Solution | RKAM Error

1 0.00 { 0.0000000000 0.0000000000 0.0000000000

2 0.25 | 0.0027718839 0.0028505791 -0.0000786952

3 0.50 | 0.0054545872 0.0056069156 -0.0001523284

4 0.75 | 0.0080506523 0.0087939398 -0.0007432875

5 1.00 { 0.0105625499 0.0108477411 -0.0002851912

RK-Butcher Solution | RK-Butcher Error | RK- Sixth Order Solution

0.0000000000 0.0000000000 0.0000000000 |
0.0028505764 -0.0000786925 0.0028499524
0.00560 68988 -0.0001523116 0.0056062955
0.0082717292 -0.0002210769 0.0082711480
0.0108475497 -0.0002849998 0.0108471859
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