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COMMON FIXED POINT THEOREMS FOR A GENERALIZED
CONTRACTIVE TYPE MAPPINGS IN METRIC SPACES
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ABSTRACT. In this paper, we give a generalized contractive type condition for a
pair of self maps of a metric space and analyze the existence of common fixed
points for these maps of a metric space.
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1. Introduction

Recently, in [1,3,4], the authors obtained some fixed point theorems for self
maps of metric space satisfying integral type contractive condition. Since then,
in [5], the author gave a generalized contractive type condition for two maps
in metric space and proved some common fixed point theorems for these maps.
That is, the author extend well-known results in [1,2,4].

In this paper, we give a generalized contractive type condition for two self
maps of a metric space and then we prove common fixed point theorems for
these maps. That is, we generalize the results of [3].

For a self map f of a nonempty set X and z € X, we denote O(z, f) by the
orbit of f at x and O(z, f,n) by the n-th orbit of f at x. That is,

O(z, f) = {fka: : k:0,1,2,---',} and O(z, f,n) = {f‘“x k=0,1,2,--- n}

For A C X, we denote the diameter of A by §(A).
Let {z,} be a bounded sequence in a metric space (X, d) and
Tp = 6({mn,xn+1,mn+g, ce }) forn=1,2,3,---. Then r, is a finite number

for all n € N and {r,} is nonincreasing and r, > 0 for all n € N. Thus there

exists a r > 0 such that lim r, =r.
nN—0o0
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From now on, we denote

M(z,y) = max {d(:v, y),d(z, fz),d(y, 9y),d(z, gy), d(y, f:v)}

for self maps f and g of a metric space (X,d) and z,y € X. Also, we denote
A by the class of nondecreasing continuous function a : [0,00) — [0,00) such
that

(al) a(0) =

(a2) a(s) > 0 for all s > 0.

Note that if a(s) = f @(t)dt, then o € A where ¢ : Rt — R* is a Lebesque
_ o | |

integrable mapping which is summable, nonnegative and / @(t)dt > 0 for each
0

u > 0.

And we denote ® by the class of nondecreasing right upper semi-continuous
function ¢ : [0,00) — [0, 00) satisfying:

(91) &(t) < tforall t > 0,

(¢2) for each t > 0, lim ¢™(t) =0

2. Common ﬁxed point't:heorems- D

In this section, we give some generahzed contractlve type common ﬁxed pomt
theorems for a pair of self maps of a metric space |

Theorem 2. 1. Let f and g be self maps of a complete metmc space (X d) and
¢ € ® and a € A satisfying: for each z, )Y € X

Ca(d(z) <o(aM@y)) (1D

If there exists a point xo9 € X such that O(xo,gf) UO(fxo, fg) is bounded ‘then
f and g have a unigue fized point z in X.

Moreover, the iteration sequence {a:n} with Ton41 = = fon and Tani2 = gTon+ti
converges to z. - |

Proof. Suppose O(a:g,g flu O( fzo, fg) is bounded for some Iy € X and let
Tont1 = fTon and Toniz = gTongy for n = 0,1,2,---. Then for each n =
0,1,2,---, z, € O(xo,9f) UO(fxo, f9). Hence_{:cn} is a bounded sequence in
(X,d). Let r, = 6({xn,xn+1,xn+2, ‘oo }) for n € N. Then there exists a r > 0
such that lim r, =r.

n—00

We now show that 7 = 0. Let [ € N be fixed. From (2.1.1) we have for n > I
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o d(z2n+1,22n) )

= a(d(fo2m, g2n-1))

< ¢(a(M(@3n,20-1)))

= o(a(maz{d(zan, 220 1), d@2nt 1, 22001),  (212)
dazn, 2onc), dlzm, 220), @z 2onst)))

< ¢(a(maz{ran—1,72n-1,72n-1,0,72n1}))

= ?35(&(?2:—1))-

Taking sup over n > [ in (2.1.2) we have a(ra) < ¢(a(ra—1)). Letting I — oo,
we have a(r) < ¢(a(r)) < a(r), which is a contradiction if r % 0. Hence r =0

and so %llngcJ rn = 0. From (2.1.2), we have

a( lim d(:cgn,xgn+1)) < qb(a( lim 1‘2;_1)) : qb(a(O')') = 0.

n— 00 n—oo

Thus iy —oeod(Ton, Tans1) = 0.

Slmllary, we can show that lim d(:cgn+1,:r:2n+2) = 0 Therefore we have
B

lim d(x,, :vn+1) = 0. We now show that {z,} is Cauchy.

If not, then there exist ¢ > 0 and subsequences {z,,} and {zm,} of {z.} with

m; > n; such that d(x,,,xm, ) > 2¢ for each i.

From (2.1.2), we have d(z,,+1,Zn,) < % and d(Zm,, Tm;—1) < %, Then

d(Zn, 1, xmi) 2 A(Tn;, Tin; ) — ATn;+1 ) Tn;) > €

end

AZTn,, Tm,—1) 2 AZTpn,, Tm,) — d(Tm;—1,Tm,;) > €

which imply

d(xm +1> :cm-i_l) 2 d(%-ua?m,.:) - d(x_m;'_—l,a:xm;) '_ d(m‘n;+lamm ) >6 |

We can assume that n; are even numbers and m; are odd numbers and
d(Zn,, Tm,) > € for each 1.

Let k; = min {mi : d(Zn,, Tm,) > €, m; are otdld number}. Then we have

€ < d(Zn;, Tk;)
S d(xni ) ivk,-——?) + d(mki—?.a wki—l) + d("‘cki—17 wki)
e+ d(xk.,: —:.2.:.3:164.*-1) + d(wk-s-;la LEk.,-_)'
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which implies lim d(x,,,zx,) = .
t— OO0

We have | |
d(xni ) xki) - d(mﬂ: ) xm+l) - d(ka xki'l'l)

S d(Tn, 41, Tk, 41) |
< d(.’L‘n‘. 1 xxi.) + d(:cn-nxm-{-l) + d(xkii xkd-l)a

which implies lim; .ood(Zn, +1, Tk, +1) = €. From (2.1.1) we have

a(d($n£+1,$k,ﬁ+1))

< qb(a(ma:c{d(:rm,xki), A(Tn. +1,Tn, ), ATk, +1, Tk, ), A(Tn,+1, Tk, ),
ATk +1,%n.)}) )

< ¢(a(max{d(:1:m,:rk‘.),d(:rniﬂ,:cni),d(:ckiﬂ,:z:k‘.),

d(xni +1, .’I,‘m) + d(xni y Lk; ), d(xki.+1 ) xk-;,) + d(xk-.‘. y In; )})) .

Taking limit as n — 0o, we have a(e) < ¢(a(e)) < a(e) which is a contradic-
tion. |
Thus {z,} is Cauchy. By the completeness of (X, d), {z,} converges to some
z in X. | |
From (2.1.1), we have
ae(d(fz, xzn)) = a(d(fz,gxgn_.l))
< ¢(a(M(z,520-1))
= ¢(a(max{d(z,x2n_1),d(z,fz),d(a:gn_l,xgn),

d(z, Zon), d(Zan, fz)})).

(2.1.3)

Taking limit in (2.1.3) as n — 00, we have a(d(fz, z)) < ¢(a(d(fz,z))) which
implies that a(d(fz,z)) = 0. Hence d(fz,z) =0 or z = fz.
Now, we show that z = gz. From (2.1.1), we have

O5(05(552n+1, 92)) = a(d(fxgn,gz))
o < ¢(a(M(z20,2))
= cb(a(maa:{d(xgn, 2),d(Zan, Tant1),d(2, g2),

d(@2n,92),d(2, T2041)})) -

(2.1.4)
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Taking limit in (2.1.4) as n — oo, we have a(d(z,9z)) < ¢(a(d(z,gz))) which
implies that a(d(z,gz)) = 0. Hence d(z,92z) =0 or z = gz.
Therefore, z = fz = gz, that is z is a common fixed point of f and g. For

the uniqueness, let z and w be common fixed points of f and g.
From (2.1.1), we have

a(d(z,w)) - a(d( fz,gw))

< ¢(a(M(z,v)) _
= ¢(a(max{d(z, v),d(z, 2), d(w, gu),d(z, gw), d(w, f2)}))
((max{d(z, w), d(z, 2), d(w, w), d(z, w),d(w,2)}))
(

which implies that a(d(z,w)) = 0. Hence d(z,w) =0 or z = w. UJ

The following example show that if we don’t have the condition of which

O(zo,9f)UO(fzg, fg) is bounded for some z¢ € X, then Theorem 2.1 does not
hold. So we have to have the above condition.

Example. Let f,g: N — N be defined by fn = gn =n+1 and let ot) = 2* ~1

and ¢(t) = —;—t fort > 0. Then a € A and ¢ € ®.
For m > n we have

a(d(n,gm)) =2m "t 1 =9m""9 _1>2(2™ " - 1) = 2a(d(fn,gm)).
Hence we have |
a(d(fn, gm)) = (2" - 1)
HCARAEEE)
#(ald(n, gm)))
#(a(maz{d(n, m),d(n, fn), d(m, gm),d(m, fn),d(n, gm)})).

IA

IN

Thus (2.1.1) is satisfied. But the orbits are not bounded and f and g have
no common fixed points.

Corollary 2.2. Let f and g be Self maps of a complete metric space (X,d) and
¢ € ® satisfying: for each z,y € X,

d(fz,9y) | [ rM(z,y)
/ T (s)ds < ¢ ( / w(S)dS)
0 0
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where p : RT — RT is nonnegative, Lebesque integrable map which is summable
€

and for each € > 0, / @(s)ds > 0.

If there exists a point xo € X such that O(zo,9f) U O(fzo, fg) is bounded
then f and g have a unique fired point z in X. - | I

Moreover, the iteration sequence x,, with Tont1 = [Ton and Taony2 = gTon+1
converges to z. -

Taking ¢(t) = kt for k£ € [0,1) in Theorem 2.1 and Corollary 2.2, we have the
next corollaries. |

Corollary 2.3. Let f and g be self maps of a complete metric space (X,d) and
a € A satisfying: there exists k € [0,1) such that for each z,y € X,

o(d(fz,99)) < ka(M(z,3))

If there exists a point xop € X such that O(xo, g9f) UO(fxo, fg) is bounded, then
f and g have a unique fized point z in X.

Moreover, the iteration sequence x, with Tony = f:z:zn' and x2n+2 = gx2n+1
‘converges to z.

Corollary 2.4. Let f and g be self maps of a complete metric space (X d)
satisfying: there exists k € [0, 1) such that fo'r each T, y 3 X | :

d(fz,gy) | Mzy) o
/ p(s)ds < kf c,o(s)ds"
0o 0

If the're exists a point xo € X such that O(zg,9f) U O(fxo, f g) is bounded then
f and g have a unique fized point z in X.

Moreover, the iteration sequence x, with Tont1 = fTon and Tont2 = gZTant
converges to . | | o

Remark 2.4. Let f = g and a(u) = / p(t)dt in Corollary 2.3. Then we have

Theorem 4 of [3], where ¢ : Rt — Rt is a Lebesque mtegrable mapping which
iS summable nonnegatlve and f (,o(t)dt > 0 for each s > 0.
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