FUZZY PAIRWISE γ -IRRESOLUTE HOMEOMORPHISMS

Hyo Sam Lee, Joo Sung Lee and Young Bin Im*

ABSTRACT. We define and characterize a fuzzy pairwise γ -irresolute open mapping (fuzzy pairwise γ -irresolute closed mapping) on a fuzzy bitopological space. We also characterize a fuzzy pairwise γ -irresolute homeomorphism on a fuzzy bitopological space.

AMS Mathematics Subject Classification : 54A40 Key words and phrases : Fuzzy pairwise γ -irresolute continuous mapping, fuzzy pairwise γ -open mapping, fuzzy pairwise γ -closed mapping, fuzzy pairwise γ -irresolute homeomorphism.

1. Introduction

Azad [1], Singal and Prakash [9] introduced a fuzzy semiopen set and a fuzzy preopen set and studied the characteristic properties of a fuzzy semicontinuous mapping and a fuzzy precontinuous mapping on a fuzzy topological space. Later, Sampath Kumar [7, 8] defined a (τ_i, τ_j) -fuzzy semiopen set and a (τ_i, τ_j) -fuzzy preopen set and characterized a fuzzy pairwise semicontinuous mapping and a fuzzy pairwise precontinuous mapping on a fuzzy bitopological space as a natural generalization of a fuzzy topological space.

Hanafy [2] defined a fuzzy γ -open set and studied a fuzzy γ -continuous mapping on a fuzzy topological space. The first author and others [4, 5] developed Hanafy's results. In particular, they defined and characterized a fuzzy γ -irresolute mapping and a fuzzy γ -irresolute open mapping on a fuzzy topological space. They also [3, 6] extended their results to a fuzzy bitopological space, that is, they defined and characterized a fuzzy pairwise γ -continuous mapping

Received August 22, 2007. Revised April 23, 2008. * Corresponding author.

The first author was supported by Daegu University Grant (2004).

^{© 2008} Korean SIGCAM and KSCAM

and a fuzzy pairwise γ -irresolute continuous mapping on a fuzzy bitopological space.

In this paper, we define a fuzzy pairwise γ -irresolute open mapping (a fuzzy pairwise γ -irresolute closed mapping) on a fuzzy bitopological space and study their properties. And we characterize a fuzzy pairwise γ -irresolute homeomorphism on a fuzzy bitopological space.

2. Preliminaries

Let X be a set and let τ_1 and τ_2 be fuzzy topologies on X. Then we call (X, τ_1, τ_2) a fuzzy bitopological space [fbts].

A mapping $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ is fuzzy pairwise continuous [fpc] if and only if the induced mapping $f:(X,\tau_k)\to (Y,\tau_k^*)$ is fuzzy continuous for k=1,2.

Notations. (1) Throughout this paper, we take an ordered pair (τ_i, τ_j) with $i, j \in \{1, 2\}$ and $i \neq j$.

(2) For simplicity, we abbreviate a τ_i -fuzzy open set μ and a τ_j -fuzzy closed set μ with a τ_i – fo set μ and a τ_j – fc set μ respectively. Also, we denote the interior and the closure of μ for a fuzzy topology τ_i with τ_i – Int μ and τ_i – Cl μ respectively.

Definition 2.1. [6, 7, 8] Let μ be a fuzzy set on a fbts X. Then we call μ ;

(1) a
$$(\tau_i, \tau_j)$$
-fuzzy semiopen $[(\tau_i, \tau_j) - fso]$ set on X if

$$\mu \leq \tau_i - \mathrm{Cl}(\tau_i - \mathrm{Int}\,\mu),$$

(2) a (τ_i, τ_j) -fuzzy semiclosed $[(\tau_i, \tau_j) - fsc]$ set on X if

$$\tau_i - \operatorname{Int}(\tau_i - \operatorname{Cl}\mu) \leq \mu$$

(3) a (τ_i, τ_j) -fuzzy preopen $[(\tau_i, \tau_j) - fpo]$ set on X if

$$\mu \leq \tau_i - \operatorname{Int}(\tau_i - \operatorname{Cl} \mu),$$

(4) a (τ_i, τ_j) -fuzzy preclosed $[(\tau_i, \tau_j) - fpc]$ set on X if

$$\tau_i - \mathrm{Cl}(\tau_j - \mathrm{Int}\,\mu) \leq \mu,$$

(5) a (τ_i, τ_j) -fuzzy γ -open $[(\tau_i, \tau_j) - f\gamma_0]$ set on X if

$$\mu \leq \tau_i - \operatorname{Cl}(\tau_i - \operatorname{Int}\mu) \vee \tau_i - \operatorname{Int}(\tau_i - \operatorname{Cl}\mu)$$
 and

(6) a (τ_i, τ_j) -fuzzy γ -closed $[(\tau_i, \tau_j) - f\gamma c]$ set on X if

$$\tau_i - \operatorname{Cl}(\tau_i - \operatorname{Int}\mu) \wedge \tau_i - \operatorname{Int}(\tau_i - \operatorname{Cl}\mu) \leq \mu.$$

It is clear that every $(\tau_i, \tau_j) - fso$ set is a $(\tau_i, \tau_j) - f\gamma o$ set and every $(\tau_i, \tau_j) - fpo$ set is a $(\tau_i, \tau_j) - f\gamma o$ set from the above definition. But the converses need not be true in general [6].

Proposition 2.2. [6] (1) The union of $(\tau_i, \tau_j) - f\gamma_0$ sets is a $(\tau_i, \tau_j) - f\gamma_0$ set. (2) The intersection of $(\tau_i, \tau_j) - f\gamma_0$ sets is a $(\tau_i, \tau_j) - f\gamma_0$ set.

But the intersection (the union) of two $(\tau_i, \tau_j) - f\gamma o$ sets $((\tau_i, \tau_j) - f\gamma c$ sets) need not be a $(\tau_i, \tau_j) - f\gamma o$ set $((\tau_i, \tau_j) - f\gamma c$ set) [6].

Proposition 2.3. [6] Let μ be a fuzzy set on a fbts X.

- (1) If μ is a $(\tau_i, \tau_j) f\gamma_0$ and $\tau_j fc$ set, then μ is a $(\tau_i, \tau_j) fs_0$ set.
- (2) If μ is a $(\tau_i, \tau_j) f\gamma c$ and $\tau_j fo$ set, then μ is a $(\tau_i, \tau_j) fsc$ set.

Definition 2.4. [6] Let μ be a fuzzy set on a fbts X.

(1) The $(\tau_i, \tau_j) - \gamma$ -interior of μ , $(\tau_i, \tau_j) - \gamma$ Int μ , is

$$\bigvee \Big\{ \nu \, | \, \nu \leq \mu, \, \nu \text{ is a } (\tau_i, \tau_j) - f \gamma o \text{ set} \Big\}.$$

(2) The $(\tau_i, \tau_j) - \gamma$ -closure of μ , $(\tau_i, \tau_j) - \gamma \operatorname{Cl} \mu$, is

$$\bigwedge \Big\{ \nu \,|\, \nu \geq \mu, \ \nu \text{ is a } (\tau_i, \tau_j) - f\gamma c \text{ set} \Big\}.$$

Obviously, $(\tau_i, \tau_j) - \gamma \text{Cl}\mu$ is the smallest $(\tau_i, \tau_j) - f\gamma c$ set which contains μ , and $(\tau_i, \tau_j) - \gamma \text{Int}\mu$ is the largest $(\tau_i, \tau_j) - f\gamma o$ set which is contained in μ . Therefore, $(\tau_i, \tau_j) - \gamma \text{Cl}\mu = \mu$ for every $(\tau_i, \tau_j) - f\gamma c$ set μ and $(\tau_i, \tau_j) - \gamma \text{Int}\mu = \mu$ for every $(\tau_i, \tau_j) - f\gamma o$ set μ .

Moreover, we have

$$\tau_i - \text{Int}\mu \le (\tau_i, \tau_j) - \text{sInt}\mu \le (\tau_i, \tau_j) - \gamma \text{Int}\mu \le \mu,$$

$$\mu \le (\tau_i, \tau_j) - \gamma \text{Cl}\mu \le (\tau_i, \tau_j) - \text{sCl}\mu \le \tau_i - \text{Cl}\mu$$

and

$$\tau_i - \operatorname{Int} \mu \le (\tau_i, \tau_j) - \operatorname{pInt} \mu \le (\tau_i, \tau_j) - \gamma \operatorname{Int} \mu \le \mu,$$
$$\mu \le (\tau_i, \tau_j) - \gamma \operatorname{Cl} \mu \le (\tau_i, \tau_j) - \operatorname{pCl} \mu \le \tau_i - \operatorname{Cl} \mu.$$

We also have the following lemma from the above definition, which will be used later.

Lemma 2.5. Let μ be a fuzzy set on a fbts X. Then

$$(\tau_i, \tau_j) - \gamma Int(\mu^c) = ((\tau_i, \tau_j) - \gamma Cl\mu)^c$$

and

$$(\tau_i, \tau_j) - \gamma Cl(\mu^c) = ((\tau_i, \tau_j) - \gamma Int\mu)^c.$$

Proof. Let μ be a fuzzy set on a fbts X. Then

$$(\tau_{i}, \tau_{j}) - \gamma \operatorname{Cl}\mu = \bigwedge \left\{ \nu^{c} \mid \nu^{c} \geq \mu, \ \nu \text{ is a } (\tau_{i}, \tau_{j}) - f\gamma o \text{ set} \right\}$$

$$= \left(\bigvee \left\{ \mu^{c} \mid \mu^{c} \geq \mu, \ \nu \text{ is a } (\tau_{i}, \tau_{j}) - f\gamma o \text{ set} \right\} \right)^{c}$$

$$= \left((\tau_{i}, \tau_{j}) - \gamma \operatorname{Int}(\mu^{c}) \right)^{c}.$$

Hence $(\tau_i, \tau_j) - \gamma \text{Int}(\mu^c) = \left(((\tau_i, \tau_j) - \gamma \text{Cl}\mu \right)^c$. Similarly we can prove the second equality. \square

Definition 2.6. [6] Let $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ be a mapping. Then f is called a fuzzy pairwise γ -continuous $[fp\gamma c]$ mapping if $f^{-1}(\nu)$ is a $(\tau_i,\tau_j)-f\gamma o$ set on X for each τ_i^*-fo set ν on Y.

Definition 2.7. [6] Let $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ be a mapping. Then f is called;

- (1) a fuzzy pairwise γ -open $[fp\gamma \ open]$ mapping if $f(\mu)$ is a $(\tau_i^*, \tau_j^*) f\gamma o$ set on Y for each $\tau_i fo$ set μ on X and
- (2) a fuzzy pairwise γ -closed $[fp\gamma \ closed]$ mapping if $f(\mu)$ is a $(\tau_i^*, \tau_j^*) f\gamma c$ set on Y for each $\tau_i fc$ set μ on X.

Definition 2.8. [3] Let $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ be a mapping. Then f is called a fuzzy pairwise γ -irresolute continuous $[fp\gamma$ -irresolute continuous] mapping if $f^{-1}(\nu)$ is a $(\tau_i,\tau_j)-f\gamma o$ set on X for each $(\tau_i^*,\tau_j^*)-f\gamma o$ set ν on Y.

It is clear that every $fp\gamma$ -irresolute continuous mapping is $fp\gamma c$ from the above definitions. But the converse is not true in general [3].

Proposition 2.9. [3] Let $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ be a mapping. Then the following statements are equivalent:

- (1) f is $fp\gamma$ -irresolute continuous.
- (2) The inverse image of each $(\tau_i^*, \tau_j^*) f\gamma c$ set on Y is a $(\tau_i, \tau_j) f\gamma c$ set on X.
 - (3) $f(\tau_i, \tau_j) \gamma Cl\mu \le (\tau_i^*, \tau_j^*) \gamma Cl(f(\mu))$ for each fuzzy set μ on X.
 - $(4) (\tau_i, \tau_j) \gamma Cl(f^{-1}(\nu)) \leq f^{-1}((\tau_i^*, \tau_j^*) \gamma Cl\nu) \text{ for each fuzzy set } \nu \text{ on } Y.$
 - (5) $f^{-1}((\tau_i^*, \tau_i^*) \gamma Int\nu) \leq (\tau_i, \tau_j) \gamma Int(f^{-1}(\nu))$ for each fuzzy set ν on Y.

Proposition 2.10. [3] Let $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ be a bijection. Then f is $fp\gamma$ -irresolute continuous if and only if for each fuzzy set μ on X,

$$(\tau_i^*, \tau_j^*) - \gamma Int(f(\mu)) \le f((\tau_i, \tau_j) - \gamma Int\mu).$$

3. Fuzzy pairwise γ -irresolute homeomorphisms

In this section, we introduce a fuzzy pairwise γ -irresolute open mapping (a fuzzy pairwise γ -irresolute closed mapping) which is stronger than a fuzzy pairwise γ -open mapping (a fuzzy pairwise γ -closed mapping). And we characterize a fuzzy pairwise γ -irresolute open mapping (a fuzzy pairwise γ -irresolute closed mapping) and a fuzzy pairwise γ -irresolute homeomorphism.

Definition 3.1. Let $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ be a mapping. Then f is called (1) a fuzzy pairwise γ -irresolute open $[fp\gamma$ -irresolute open] mapping if $f(\mu)$ is a $(\tau_i^*,\tau_i^*)-f\gamma o$ set on Y for each $(\tau_i,\tau_j)-f\gamma o$ set μ on X and

(2) a fuzzy pairwise γ -irresolute closed $[fp\gamma$ -irresolute closed] mapping if $f(\mu)$ is a $(\tau_i^*, \tau_j^*) - f\gamma c$ set on Y for each $(\tau_i, \tau_j) - f\gamma c$ set μ on X.

It is clear that every $fp\gamma$ -irresolute open mapping and every $fp\gamma$ -irresolute closed mapping are $fp\gamma$ open and $fp\gamma$ closed respectively. But the converses are not true in general as the following example shows.

Example 3.2. Let μ_1 , μ_2 , μ_3 and μ_4 be fuzzy sets on $X = \{a, b, c\}$ with

$$\mu_1(a) = 0.9, \mu_1(b) = 0.9, \mu_1 = 0.9,$$

 $\mu_2(a) = 0.4, \mu_2(b) = 0.4, \mu_2 = 0.4$ and
 $\mu_3(a) = 0.7, \mu_3(b) = 0.7, \mu_3 = 0.7.$

Let

$$\tau_1 = \{0_X, \mu_1, 1_X\}, \tau_2 = \{0_X, 1_X\} \text{ and }$$

$$\tau_1^* = \{0_X, \mu_3, 1_X\}, \tau_2^* = \{0_X, \mu_2, 1_X\}.$$

be fuzzy topologies on X.

Then we can show that the identity mapping $i_X: (X, \tau_1, \tau_2) \to (X, \tau_1^*, \tau_2^*)$ is $fp\gamma$ open. But i_X is not $fp\gamma$ -irresolute open since μ_3^c is not a $(\tau_i^*, \tau_j^*) - f\gamma o$ set.

Theorem 3.3. Let $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ be a mapping. Then the following statements are equivalent:

- (1) f is $fp\gamma$ -irresolute open.
- (2) $f(\tau_i, \tau_j) \gamma \operatorname{Int}\mu \leq (\tau_i^*, \tau_j^*) \gamma \operatorname{Int}(f(\mu))$ for each fuzzy set μ on X.
- (3) $(\tau_i, \tau_j) \gamma \operatorname{Int}(f^{-1}(\nu)) \leq f^{-1}((\tau_i^*, \tau_j^*) \gamma \operatorname{Int}\nu)$ for each fuzzy set ν on Y.

Proof. (1) implies (2): Let μ be a fuzzy set on X. Then $f((\tau_i, \tau_j) - \gamma \text{Int}\mu)$ is a $(\tau_i^*, \tau_j^*) - f\gamma o$ set on Y and $f((\tau_i, \tau_j) - \gamma \text{Int}\mu) \leq f(\mu)$. Hence

$$f((\tau_i, \tau_j) - \gamma \operatorname{Int} \mu) = (\tau_i^*, \tau_j^*) - \gamma \operatorname{Int} (f((\tau_i, \tau_j) - \gamma \operatorname{Int} \mu))$$

$$\leq (\tau_i^*, \tau_j^*) - \gamma \operatorname{Int} (f(\mu)).$$

(2) implies (3): Let ν be a fuzzy set on Y. Then

$$f\Big((\tau_i, \tau_j) - \gamma \operatorname{Int}(f^{-1}(\nu))\Big) \leq (\tau_i^*, \tau_j^*) - \gamma \operatorname{Int}(f(f^{-1}(\nu)))$$

$$\leq (\tau_i^*, \tau_j^*) - \gamma \operatorname{Int}\nu.$$

Therefore,

$$(\tau_{i}, \tau_{j}) - \gamma \operatorname{Int}(f^{-1}(\nu)) \leq f^{-1} \Big(f((\tau_{i}, \tau_{j}) - \gamma \operatorname{Int}(f^{-1}(\nu))) \Big)$$

$$\leq f^{-1} ((\tau_{i}^{*}, \tau_{i}^{*}) - \gamma \operatorname{Int}\nu).$$

(3) implies (1): Let μ be a $(\tau_i, \tau_j) - f\gamma_0$ set on X. Then

$$\mu = (\tau_i, \tau_j) - \gamma \operatorname{Int} \mu$$

$$\leq (\tau_i, \tau_j) - \gamma \operatorname{Int} \left(f^{-1}(f(\mu)) \right)$$

$$\leq f^{-1}((\tau_i^*, \tau_j^*) - \gamma \operatorname{Int}(f(\mu))).$$

Therefore,

$$f(\mu) \leq f\left(f^{-1}((\tau_i, \tau_j) - \gamma \operatorname{Int}(f(\mu)))\right)$$

$$\leq (\tau_i^*, \tau_j^*) - \gamma \operatorname{Int}(f(\mu)).$$

Hence $f(\mu) = (\tau_i^*, \tau_j^*) - \gamma \operatorname{Int}(f(\mu))$. Consequently, $f(\mu)$ is a $(\tau_i^*, \tau_j^*) - f\gamma o$ set on Y and therefore f is $fp\gamma$ -irresolute open. \square

Proposition 3.4. A mapping $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ is $fp\gamma$ -irresolute closed if and only if $(\tau_i^*,\tau_j^*)-\gamma Cl(f(\mu))\leq f\Big((\tau_i,\tau_j)-\gamma Cl\mu\Big)$ for each fuzzy set μ on X.

Proof. Let μ be a fuzzy set on X. Then $f((\tau_i, \tau_j) - \gamma \operatorname{Cl} \mu)$ is a $(\tau_i^*, \tau_j^*) - f \gamma c$ set on Y and $f(\mu) \leq f((\tau_i, \tau_j) - \gamma \operatorname{Cl} \mu)$. Hence

$$(\tau_i^*, \tau_j^*) - \gamma \operatorname{Cl}(f(\mu)) \le (\tau_i^*, \tau_j^*) - \gamma \operatorname{Cl}(f((\tau_i, \tau_j) - \gamma \operatorname{Cl}\mu))$$
$$= f((\tau_i, \tau_j) - \gamma \operatorname{Cl}\mu).$$

Conversely, let μ be a $(\tau_i, \tau_j) - f\gamma c$ set on X. Then

$$(\tau_i^*, \tau_j^*) - \gamma \operatorname{Cl}(f(\mu)) \le f((\tau_i, \tau_j) - \gamma \operatorname{Cl}\mu)$$
$$= f(\mu).$$

Consequently, $f(\mu)$ is a $(\tau_i^*, \tau_j^*) - f\gamma c$ set on Y and therefore f is a $fp\gamma$ -irresolute closed mapping. \square

Theorem 3.5. Let $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ be a bijection. Then the following statements are equivalent:

(1) f is $fp\gamma$ -irresolute closed.

(2)
$$f^{-1}((\tau_i^*, \tau_j^*) - \gamma C l \nu) \leq (\tau_i, \tau_j) - \gamma C l(f^{-1}(\nu))$$
 for each fuzzy set ν on Y .

- (3) f is $fp\gamma$ -irresolute open.
- (4) f^{-1} is $fp\gamma$ -irresolute continuous.

Proof. (1) implies (2): Let ν be a fuzzy set on Y. Then, by Proposition 3.4,

$$(\tau_i^*, \tau_j^*) - \gamma \operatorname{Cl}(f(f^{-1}(\nu))) \leq f((\tau_i, \tau_j) - \gamma \operatorname{Cl}(f^{-1}(\nu))).$$

Hence

$$f^{-1}\Big((\tau_i^*,\tau_j^*)-\gamma\mathrm{Cl}(f(f^{-1}(\nu)))\Big)\leq f^{-1}\Big(f((\tau_i,\tau_j)-\gamma\mathrm{Cl}(\nu))\Big).$$

Since f is a bijection,

$$f^{-1}\Big((\tau_i^*,\tau_j^*)-\gamma\mathrm{Cl}\nu\Big)\leq (\tau_i,\tau_j)-\gamma\mathrm{Cl}(f^{-1}(\nu)).$$

(2) implies (1): Let μ be a fuzzy set on X. Then

$$f^{-1}\Big((\tau_i^*,\tau_j^*)-\gamma\mathrm{Cl}(f(\mu))\Big)\leq (\tau_i,\tau_j)-\gamma\mathrm{Cl}(f^{-1}(f(\mu))).$$

Hence

$$f(f^{-1}\left((\tau_i^*,\tau_j^*)-\gamma\mathrm{Cl}(f(\mu)))\right)\leq f\left((\tau_i,\tau_j)-\gamma\mathrm{Cl}(f^{-1}(f(\mu)))\right).$$

Since f is a bijection,

$$(\tau_i^*, \tau_j^*) - \gamma \operatorname{Cl}(f(\mu)) \le f((\tau_i, \tau_j) - \gamma \operatorname{Cl}\mu).$$

Therefore, by Proposition 3.4, f is $fp\gamma$ -irresolute closed.

(2) implies (3): Let ν be a fuzzy set on Y. Then

$$f^{-1}\Big((\tau_i^*,\tau_j^*)-\gamma\mathrm{Cl}(\nu^c)\Big)\leq (\tau_i,\tau_j)-\gamma\mathrm{Cl}(f^{-1}(\nu^c)).$$

By Lemma 2.5,

$$(\tau_i, \tau_j) - \gamma \operatorname{Int}(f^{-1}(\nu)) = \left((\tau_i, \tau_j) - \gamma \operatorname{Cl}(f^{-1}(\nu^c)) \right)^c$$

$$\leq f^{-1} \left(((\tau_i^*, \tau_j^*) - \gamma \operatorname{Cl}(\nu^c))^c \right)$$

$$= f^{-1} \left((\tau_i^*, \tau_j^*) - \gamma \operatorname{Int} \nu \right).$$

Hence f is $fp\gamma$ -irresolute open from Theorem 3.3.

(3) implies (4): Let ν be a fuzzy set on Y. Then

$$(\tau_i, \tau_j) - \gamma \operatorname{Int}(f^{-1}(\nu)) \leq f^{-1} \Big((\tau_i^*, \tau_j^*) - \gamma \operatorname{Int} \nu \Big).$$

Since f is a bijection, by Proposition 2.10, f^{-1} is $fp\gamma$ -irresolute continuous.

(4) implies (2): It is clear from Proposition 2.9. \square

We have the following corollaries from Proposition 2.9, Proposition 3,4 and Theorem 3.3.

Corollary 3.6. Let $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ be a mapping. Then, f is a $fp\gamma$ -irresolute closed and $fp\gamma$ -irresolute continuous if and only if $f((\tau_i,\tau_j)-\gamma Cl\mu)=(\tau_i^*,\tau_j^*)-\gamma Cl(f(\mu))$ for each fuzzy set μ on X.

Corollary 3.7. Let $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ be a mapping. Then, f is $fp\gamma$ -irresolute open and $fp\gamma$ -irresolute continuous if and only if $f^{-1}\Big((\tau_i^*,\tau_j^*)-\gamma Cl\nu\Big)=(\tau_i,\tau_j)-\gamma Cl(f^{-1}(\mu))$ for each fuzzy set ν on Y.

A bijection $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ is called a fuzzy pairwise γ -irresolute homeomorphism if f and f^{-1} are fuzzy pairwise γ -irresolute continuous mappings.

Theorem 3.8. Let $f:(X,\tau_1,\tau_2)\to (Y,\tau_1^*,\tau_2^*)$ be a bijection. Then the following statements are equivalent:

- (1) f is a fuzzy pairwise γ -irresolute homeomorphism.
- (2) f^{-1} is a fuzzy pairwise γ -irresolute homeomorphism.
- (3) f and f^{-1} are $fp\gamma$ -irresolute open ($fp\gamma$ -irresolute closed).
- (4) f is $fp\gamma$ -irresolute continuous and $fp\gamma$ -irresolute open ($fp\gamma$ -irresolute closed).
 - (5) $f(\tau_i, \tau_j) \gamma Cl\mu = (\tau_i^*, \tau_j^*) \gamma Cl(f(\mu))$ for each fuzzy set μ on X.
 - (6) $f(\tau_i, \tau_j) \gamma Int\mu = (\tau_i^*, \tau_j^*) \gamma Int(f(\mu))$ for each fuzzy set μ on X.
 - (7) $f^{-1}\left((\tau_i^*, \tau_j^*) \gamma \operatorname{Int}\nu\right) = (\tau_i, \tau_j) \gamma \operatorname{Int}(f^{-1}(\nu))$ for each fuzzy set ν on Y.
 - (8) $(\tau_i, \tau_j) \gamma Cl(f^{-1}(\nu)) = f^{-1}((\tau_i^*, \tau_j^*) \gamma Cl\nu)$ for each fuzzy set ν on Y.

Proof. (1) implies (2): It follows immediately from the definition of a fuzzy pairwise γ -irresolute homeomorphism.

- (2) implies (3) and (3) implies (4): It follows from Theorem 3.5.
- (4) implies (5): It follows from Theorem 3.5 and Corollary 3.6.

(5) implies (6): Let μ be a fuzzy set on X. Then, by Lemma 2.5,

$$f((\tau_i, \tau_j) - \gamma \operatorname{Int} \mu) = \left(f((\tau_i, \tau_j) - \gamma \operatorname{Cl}(\mu^c)) \right)^c$$
$$= \left((\tau_i^*, \tau_j^*) - \gamma \operatorname{Cl}(f(\mu^c)) \right)^c$$
$$= (\tau_i^*, \tau_j^*) - \gamma \operatorname{Int} f(\mu).$$

(6) implies (7): Let ν be a fuzzy set on Y. Then

$$f((\tau_i, \tau_j) - \gamma \text{Int}(f^{-1}(\nu)) = (\tau_i^*, \tau_j^*) - \gamma \text{Int}(f(f^{-1}(\nu)))$$

= $(\tau_i^*, \tau_j^*) - \gamma \text{Int}\nu$.

Hence

$$f^{-1}\Big(f((\tau_i, \tau_j) - \gamma \text{Int}(f^{-1}(\nu))\Big) = f^{-1}((\tau_i^*, \tau_j^*) - \gamma \text{Int}\nu).$$

Therefore,

$$(\tau_i, \tau_j) - \gamma \text{Int}(f^{-1}(\nu)) = f^{-1}((\tau_i^*, \tau_j^*) - \gamma \text{Int}\nu).$$

(7) implies (8): Let ν be a fuzzy set on Y. Then, by Lemma 2.5,

$$(\tau_i, \tau_j) - \gamma \operatorname{Cl}(f^{-1}(\nu)) = \left(f^{-1}((\tau_i^*, \tau_j^*) - \gamma \operatorname{Int}(\nu^c)) \right)^c$$
$$= \left((\tau_i, \tau_j) - \gamma \operatorname{Int}(f^{-1}(\nu^c)) \right)^c$$
$$= f^{-1}((\tau_i^*, \tau_j^*) - \gamma \operatorname{Cl}\nu).$$

(8) implies (1): It follows from Theorem 3.5 and Corollary 3.7. \square

REFERENCES

- 1. K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82(1981), 14-32.
- 2. I. M. Hanafy, Fuzzy γ -open sets and fuzzy γ -continuity, J. Fuzzy Math. 7(1999), 419-430.
- 3. Y. B. Im, Fuzzy pairwise γ -irresoluteness, International J. fuzzy and Intelligent Systems, 7(2007), 188-192.
- 4. Y. B. Im, Fuzzy γ -open sets and γ -irresolute open mappings, Far East J. Math. Sci. 21(2006), 259–267.
- 5. Y. B. Im, E. P. Lee and S. W. Park, Fuzzy γ -irresolute mappings on fuzzy topological spaces, J. Fuzzy Math. 14(2006), 605-612.
- 6. Y. B. Im, E. P. Lee and S. W. Park, Fuzzy pairwise γ -continuous mappings J. Fuzzy Math. 10(2002), 695–709.
- 7. S. Sampath Kumar, On fuzzy pairwise α -continuity and fuzzy pairwise pre-continuity, Fuzzy Sets and Systems 62(1994), 231-238.

- 8. S. Sampath Kumar, it Semi-open sets, semicontinuity and semi-open mappings in fuzzy bitopological spaces, Fuzzy Sets and Systems 64(1994), 421-426.
- 9. M, K. Singal and N. Prakash, Fuzzy preopen sets and fuzzy preseparation axioms, Fuzzy Sets and Systems 44(1991), 345-351.

Hyo Sam Lee received his B.S. and Ph.D. at Dongguk University under the direction of Professor D. H. Choi. Since 1980 he has been a professor at Daegu University. His research interests are group representation theory and fuzzy theory.

Dept. of Mathematics, Daegu University, Daegu 712-714, Korea e-mail: leehs@daegu.ac.kr

Joo Sung Lee received his B.S. from Dongguk University and Ph.D. at University of Florida under the direction of Professor B. Brechner. Since 1995 he has been a professor at Dongguk University. His research interests are topological dynamics and fuzzy theory.

Dept. of Mathematics, Dongguk University, Seoul 100-715, Korea e-mail: jsl@dongguk.edu

Young Bin Im received his B.S. and Ph.D. at Dongguk University under the direction of Professor K. D. Park. Since 1994 he has been a professor at Seonam University. His research interests are fuzzy topological space and fuzzy matrix.

Dept. of Mathematics, Seonam University, Namwon, Jeonbuk 590-711, Korea e-mail: philpen@naver.com