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TIGHT UPPER BOUND ON THE EXPONENTS OF A CLASS
OF TWO-COLORED DIGRAPHS

RONG WANG, YANLING SHAO*" AND YUBIN GAO

ABSTRACT. A two-colored digraph D is primitive if there exist nonnegative
integers h and k with h + k > 0 such that for each pair (i, ) of vertices
there exists an (h, k)-walk in D from i to 5. The exponent of the primitive
two-colored digraph D is the minimum value of h + k taken over all such
h and k. In this paper, we give the tight upper bound on the exponents
of a class of primitive two-colored digraphs with (s + 1) n—cycles and

one (n — 1)—cycle, and the characterizations of the extremal two-colored
digraphs.
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1. Introduction

A two-colored digraph is a digraph whose arcs are colored red or blue. We
allow loops and both a red arc and blue arc from i to j for all pairs (z,j) of
vertices. The two-colored digraph D is strongly connected provided for each pair
(,7) of vertices there is a walk in D from ¢ to j. Given a walk w in D, let r(w)
(respectively, b(w)) denote the number of red arcs (respectively, blue arcs) of w.
We call w a (r(w), b(w))-walk, and define the composition of w to be the vector

(r(w), b(w)) or
o |

A two-colored digraph D is primitive if there exist nonnegative integers h
and k with h + k > 0 such that for each pair (7, j) of vertices there exists an
(h, k)-walk in D from i to j. The ezponent of the primitive two-colored digraph
D is the minimum value of h + k taken over all such h and k.

Let C = {m,72,-.-,%} be the set of cycles of a two-colored digraph D. Set
M to be the 2 x [ matrix whose ith column is the composition of ;. We call M
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the cycle matriz of D. The content of M, denoted content(M ), is defined to be
0 if the rank of M is less than 2 and the greatest common divisor (i.e., g.c.d) of
the determinants of all 2 x 2 submatrices of M, otherwise.

Lemma 1. ([1]) Let D be a two-colored digraph with cycle matric M. Then D
1s primitive if and only if D is strongly connected and content(M) = 1.

There is a natural correspondence between two-colored digraphs and nonneg-
ative matrix pairs (see[1]). The concept of the exponent of two-colored digraph
arises in the study of finite Markov chains (see [1, 2]), and some results have
already been obtained (see[l, 4, 5, 6, 7]).

In this paper, we consider the class of two-colored digraphs of order n + s,
denoted by D, s, obtained by coloring the digraph as in Fig.1, where n > 3.
If s = 0, then the digraph is Wielandt digraph of order n that has the largest
exponent (n — 1)2 + 1. The paper [1] gives the tight bound on the exponents of
families of primitive two-colored digraphs of order n whose uncolored digraph
is Wielandt digraph. Motivated by the paper [1], we consider the exponents of
Dy s, where s > 1.

n n+l1 n+s

e .. '_‘_n_g ._
‘Fig. 1 The digraph
- Clearly, forrany D € D, ;, D has (s + 1) n—cycles and one (n — 1)—cycle.
Without loss of generality, we may assume the arc (n —1) — 1 is red. The path
(n —1) — j — 1 has the following four cases for j =n,n+1,...,n+ s:
Case 1. The arcs (n —1) — j and j — 1 are all red. In this case, we call the
path (n —1) — 7 — 1 a red-red path. ‘
- Case 2. The arcs (n—1) — j and j — 1 are all blue. In this case, we call the
path (n— 1) — 7 — 1 a blue-blue path. -
Case 3. The arc (n — 1) — j is red and the arc j — 1 is blue. In this case,
we call the path (n — 1) — j — 1 a red-blue path.
- Case 4. The arc (n — 1) — j is blue and the arc 7 — 1 is red. In this case,
we call the path (n — 1) — j — 1 a blue-red path.
Thus the two-colored digraphs in D, ; have the following fifteen cases:
Case 1. The paths (n —1) = j — 1forj=n,n+1,...,n+4 s are all red-red
paths. | |
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Case 2. The paths (n—1) — j —» 1 for j =n,n+1,...,n+ s are all blue-blue
paths.

Case 3. The paths (n—1) — j = 1forj=n,n+1,...,n+ s are all red-blue
paths. - |

Case 4. The paths (n—1) - j —» 1 for j =n,n+1,...,n+ s are all blue-red
paths. |

Case 5. The paths (n -1) - j — 1 for y =n,n+1,...,n + s contain only
red-red paths and blue-blue paths. N

Case 6. The paths (n —1) — 7 — 1 for j = n, n+1,...,n+s contain only
red-red paths and red-blue paths. - o

Case 7. The paths (n —1) —» j — 1 for j =n,n+1,...,n + s contain only
red-red paths and blue-red paths. ”

Case 8. The paths (n —1) — j — 1 for j = n, n+1 ...,n + 8 contain only
blue-blue paths and red-blue paths. -

Case 9. The paths (n —1) — 7 — 1 for j =n,n+1,...,n 4+ s contain only
blue-blue paths and blue-red paths. | |

Case 10. The paths (n—1) - j—1forj=n,n+1,...,n+s contain only
red-blue paths and blue-red paths.

Case 11. The paths (n—1) - j — 1 for j =n,n + 1,...,mn+ s contain only
red-red paths, blue-blue paths, and red-blue paths. |

Case 12. The paths (n —1) —» j — 1for j =n,n+1,...,n+ s contain only
red-red paths, blue-blue paths, and blue-red paths. |

Case 13. The paths (n — 1) — j — 1for j=n,n+1,...,n -+ s contain only
red-red paths, red-blue paths, and blue-red paths. -

Case 14. The paths (n —1) - j — 1 for j =n,n+1,...,n+ s contain only
blue-blue paths, red-blue paths, and blue-red paths.

Case 15. The paths (n—1) — 7 — 1 for j = n,n+1,...,n+ s contain exactly
red-red paths, blue-blue paths, red-blue paths and blue-red paths.

Throughout the remainder of the paper, for any D € Dp s, we let M be
the cycle matrix of D, 71,72,...,7s+1 be (s + 1) n—cycles of D, 512 be the

(n — 1)—cycle of D, and the composition of ; be the ith column of M for
1=1,2,...,84+ 2.

‘2. The primitivity of a two-colored digraph in D, ;

Let D € D, ;. Note that D is strongly connected. We assume that the path

l1—-2—--—(n—-2) - (n—1) has a red arcs and (n — a — 2) blue arcs.
Clearly, 0 <a <n — 2.

For Case 1, the cycle matrix of D is

o | e+t2 - a+2 a1
{n-a—-2 -+ n—a—2 n—a—2

Then content(M) =n—a—2,and so D is prlmltlve if and only 1f a=n—23.
For Case 2, the cycle matrix of D is |
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a a a+1
M_[n—a v n—a n-—a—-2]' |
Then content(M) = n + a. Since n > 3 and a > 0, we have n +a > 3. So
content(M) # 1, and D is not primitive.

For Case 3, the cycle matrix of D is

a+1 a+1 a+1 ]

Mz[n—a——l -+ n—a—1 n—a-—2

~ Then content(M) = a + 1, and so D is primitive if and only if a=0.
For Case 4, the cycle matrix of D is

a+1 a-+1 a+1 ]

M:[n—a—l e nmn—a—1 n—a-—2

Then content(M) = a + 1, and so D is primitive if and only if a = 0.
- For Case 5, the cycle matrix of D is

a2 a+ 2 a a a+1
n-a—2 -+ n—-a—2 n—a -+ n—a n—a—2 |

M =

Then content(M) = g.c.d{2n,n —a — 2,—n — a}, and so D is primitive if and
only if n — a is odd. o
For Case 6, the cycle matrix of D is

M= a-+ 2 a-+ 2 a+1 o a1 a+1

| n-a-2 -+ n-a-2 n-a-1 - n—a-1 n—a—-2 |’

Then content(M) =g.c.d{n,n—-a—2,—a—1} =1, and so D is primitiVe.
For Case 7, the cycle matrix of D is | |

M = a+ 2 a+ 2 a+1 _a+1. a+1
S |mn-a—-2 -+ n—-a-2 n—a-1 -+ n—-a—-1 n—-a-2 |’
Then content(M) =g.c.d{n,n —a—2,—a—1} =1, and so D is primitive.

- For Case 8, the cycle matrix of D is

a -+ a a+l1 -+ a+1 a+1 ]

M:[n—a . m—a n—a-1 -+ n—a—-—1 n—-—a—2

Then content(M) = g.c.d{—n,—n —a,—a — 1} =1, and so D is primitive.
For Case 9, the cycle matrix of D is

a a a+1 a+1 a-+1
M= :
n—a --- n—a n—a-—-1 -+ n—a—-1 n—a—2
Then content(M) = g.c.d{—n,—n —a,—a — 1} = 1, and so D is primitive.
For Case 10, the cycle matrix of D is
a+1 -+ a+1 a+1 }

Mz[n——a—l - n—a—1 n—a—2

Then content(M) = a + 1, and so D is 'primitive if and only if a = 0.
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For Case 11, the cycle matrix of D is

a-+ 2 e a-+ 2 a ce a
M =
n-a—-2 - n—a—2 n—a -+ n—a
a+1 ce a+1 a+1
n-a—1 -+ n—a—1 n—a-—2

Then content(M) = g.c.d{2n,n,n-a—2,-—n,—n—a,—a~—1} = 1, and so
D is primitive.
For Case 12, the cycle matrix of D is

a-+ 2 e a—+2 a R a
M=
n-a—2 - n—a—2 n—a -+ N—a
a+1 ce a+1 a-+1
n—a—-1 -+ n—a—1 n—a—-2 |’
Then content(M) = g.c.d{2n,n,n—a—2,—n,~n—a,~a—1} =1,and so D is
primitive.
Table 1
, , All kinds of paths in the paths
Classification (m—1)—j—lforj=nn+1l,.. . n+s a
Type 1 red-red paths a=n-—3
Type 2 red-blue paths a=0
Type 3 blue-red paths a=
Type 4 red-red paths and blue-blue paths n — a is odd
Type 5 red-red paths and red-blue paths
Type 6 red-red paths and blue-red paths
Type 7 blue-blue paths and red-blue paths
Type 8 blue-blue paths and blue-red paths
Type 9 red-blue paths and blue-red paths a=20
red-red paths, blue-blue paths and red-blue
Type 10
paths
red-red paths, blue-blue paths and blue-red
Type 11
paths
red-red paths, red-blue paths and blue-red
Type 12
paths
blue-blue paths, red-blue paths and blue-red
Type 13
paths
T 14 red-red paths, blue-blue paths, red-blue paths
ype and blue-red paths
For Case 13, the cycle matrix of D is
M= a-+ 2 a+ 2 a+1 a+1 a+1
|n-a-2 -+ n—a—-2 n—a-1 -+ n—a—-1 n—a-—2

Then content(M) = g.c.d{n,n —a —2,—~a— 1} = 1, and so D is primitive.
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For Case 14, the cycle matrix of D is

a - a a+1 - a+1 a+1 }

M =
n—-a - n—a n—a—131 ++ n—a—1 n—a—2

Then content(M) = g.c.d{—n,—n —a,~a— 1} = 1, and so D is primitive.
For Case 15, the cycle matrix of D is

a+2 EE a+ 2 a e a
M = |
n-a—2 -+ n—a—2 n—a --- n—a
a-+1 .o a+1 a-+1
n-a-1 -+ n—a—-1 n—a-2 '

Then content(M) = g.c.d{2n,n,n—a—2,-n,—n—a,~a—1} =1, and so D is
primitive.

To combine above discussion, we have the following result.

Theorem 1. Let D € D, ;. Then D is primitive if and only if D is one of the
fourteen types in Table 1.

3. The tight bound on the exponents

In this section, we give the tight upper bound on the exponents of primitive
two-colored digraphs in D, ,, and the characterizations of the extremal two-
colored digraphs. The main result is Theorem 2.

Lemma 2. Let D € D, ; be primitive. If D is Type 1 in Table 1, then exp(D) <
o2n? —4n + 1.

Proof. The cycle matrix of D is

n—-1 -+ n—-1 n-2
1 o1 1

Clearly, D has only one blue arc, and the blue arcisinthe path1 -2 — -+ —
(n—2) — (n—1). |

For any pair (2, j) of vertices of D, we prove that there is a (2n° —6n+4, 2n—
3)—walk from 7 to j in D. Let p;; be the shortest walk from ¢ to j containing
the blue arc. Denote r = r(p;;) and b = b(ps;). It is easy to see that b = 1
and 0 < r < 2n — 4. We consider the walk that starts at vertex 7, follows p;; to
vertex j and along the way goes (2n — 4 — r) times around the (n — 1,1)—cycle
and r times around 7,42. Such a walk has composition |

[P e =[]

Hence exp(D) < 2n? — 4n + 1.

M=

Lemma 3. Let D € D, ¢ be pmmztzve If D is Type 2 in Table 1, then exp(D) <
2n? —3n+ 1. -
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Proof. The cycle matrix of D is

| 1 1 1
M=1,-1 ... n-1 n—2

For any pair (4, j) of vertices of D, we prove that there is a (2n—2,2n% — 5n+
3)—walk from 7 to j in D. Let p;; be the shortest walk from ¢ to j containing
one red arc. Denote r = r(p;;) and b = b(p;;). It is easy to see that r = 1 and
0 < b < 2n — 3. We consider the walk that starts at vertex ¢, follows p;; to
vertex j and along the way goes (2n — 3 — b) times around the (1,n — 1)—cycle
and b times around g4+2. Such a walk has composition

[”Hz”'—?’_b)[ Wl ]+b[n12} [21122-5—71,24-3]

Hence exp(D) < 2n° — 3n + 1. | U

Lemmad4. LetD € Dy, s be primitive. If D is Type 3 in Table 1, then exp(D) <
2n® — 3n + 1.

Proof. The proof is similar to the proof of Lemma 3, and we omit it. O
<

Lemma 5. Let D € D,, s be primitive. If D is Type 4 in Table 1, then exp(D)
2n? — 2n.

Proof. The cycle matrix of D is

a-+ 2 a+ 2 a a a+1
M = -
n—a—2 ---_n——a-—2 n—a -+ Nn—a nfa—2 ._

)

wheren —a is odd, and 0 <a <n —3. |

For any pair (i, 7) of vertices of D, we prove that there is a (2na + 2n, 2n —
2na — 4n)—walk from ¢ to j in D. Let p;; be the shortest path from 1 to 7.
Denote 7 = r(p;;) and b = b(p;;). It is easy to see that 0 < r < a + 2 and
0 < b <n—a. We consider the following two cases:

b 1,
Case 1. biseven. Then0<b<n-a-1 and0§7‘+-2- < §(n—l—a+3), and

thusn+a—17— -g— >0andn—a—2— g > 0. The walk that starts at vertex

| b |
1, follows p;; to vertex j and along the way goes (n +a—r1— §) times around
- b
the (a + 2,n —a — 2)—cycle, (n —a—2— 5) times around the (a,n — a)—cycle

and (r + b) times around ,.+2. Such a walk has composition

HREEE IS NS I
s ]___[ 2na + 2n ]

n—a-—2 2n? — 2na — 4n
Case 2. b is odd. we consider the following three subcases:
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Subcase 1. r 2a+2and b#n—a. Then0<r<ag+land0<b<n-a—2,

and thus n~2|~a -7 — g > 0 and n—-c21,—2 — g > 0. The walk that starts
: : n+a b
at vertex 7, follows p;; to vertex j and along the way goes ( g r — —2—)
,—a—2 b
times around the (a + 2,n — a — 2)—cycle, (n ; — - 5) times around the

(a,n —a)—cycle and (n + r + b)times around ~,42. Such a walk has composition

| r n+a b a+2 | n_——a-—-zﬂg a
[b]+( 2 _T*E)[n-a—z + (3 2)[n—a]

J

—

[ 2
+(n+r+b)[ a+1 ] 2na + 2n ]

n—-a—21|" _ 2n? — 2na — 4n

Subcase 2. 7 = a+ 2. Then b = n —a — 2. The walk that starts at vertex
i, follows p;; to vertex j and along the way goes (n + a — 1) times around the
(a+2,n—a—2)—cycle and (n — a — 2) times around the (a,n —a)—cycle. Such
a walk has composition

{ a+22}+wn+a~n{ a+22]+{n—a—a[ a‘]‘

n—a-— n—a-— n —a

2na + 2n
2n% —2na —4n |-

Subcase 3. b = n—a. Then r = a. The walk that starts at vertex %, follows p;;
to vertex j and along the way goes (n+a) times around the (a+2,n—a—2)—cycle
and (n —a — 3) times around the (a,n —a)—cycle. Such a walk has composition

a at+2 a _ 2na+2n
[n—a]+(n+a)[n—a-—2]+(nﬂa-3)[n—a]"[2n2—2na——4n '

Hence exp(D) < 2n? - 2n. - | O

Lemma 6. Let D € D, s be primitive. If D is Type § in Table.l, then exp(D) <
n®+n.

Proof. The cycle matrix of D is
M_ a+ 2 a+2  a+1 o a+l a+1
" |ln-a—-2 -+ n-a—-2 n—-a-1 -+ n—-a—-1 n—a—-2{’

where 0 <a <n - 2.

For any pair (4, j) of vertices of D, we prove that there is a (na +n + 2a +
3,n® —na — 2a — 3)—walk from 3 to j in D. Let p;; be the shortest path from i
to j. Denote r = r(p;;) and b = b(pi;). It is easy to see that 0 <r < a + 2 and
0 <b<n-—a-—1 We consider the walk that starts at vertex i, follows p;; to
vertex j and along the way goes (a+2—r) times around the (a+2,n—a—2)—cycle,
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(n—a—1-b5) times around the (a+1,n—a—1)—cycle and (r + b) times around
Ys+2. Such a walk has composition

[Z]+(a+2—7~)[ a+22]+(n—a—1—~b)[ o+1 ]

n—a-— n—a-—1

a+1 | | na+n+2a+3 |
Hr+b) [ n—a—2 ] - [ n? —na—2a—3 ] '
Hence exp(D) < n%+n. O
Lemma 7. Let D € D, ; be primitive. If D is Type 6 in Table 1, then exp(D) <
n? +n.
Proof. The proof is similar to the proof of Lemma 6, and we omit it. ]

Lemma 8. Let D € D, ; be primitive. If D is Type 7 in Table 1, then exp(D) <
2n? — 2n.

Proof. The cycle matrix of D is

5 a Ny a a+1 e a+1 a+1 :
M= y
n—-a -+ n—a n—-a—-1 -+ n—a—1 n—a—2

where 0 <a <n - 2. |
For any pair (7, j) of vertices of D, we prove that there is a (na + n + a? +
a,n* —n — a® — a)—walk from 7 to j in D. Let p;; be the shortest path from
it to j. Denote r = r(p;;) and b = b(ps;). It is easy to see that 0 < r < a+ 1,
0<r+bd<nand0<2r+dv<n+a+1l.
Ifi=j=ke{nn+1,...,n+5s}and the path (n—1) — k — 1 is a blue-blue
path. Then the walk that starts at vertex ¢, follows p;; to vertex j and along

the way goes (a + 1) times around the (a,n —a)—cycle and n times around y,42.
Such a walk has composition

0 a a+1 | [ na+n+a®+a
[ 0 ] +(a+1)[ n—a ] +n[ n—a-—?2 ] - [ n?-n-a%—a ]
Otherwise, consider the following two cases: | |
Case 1. 0 < 2r + b < n+ a. Then the walk that starts at vertex 2, follows
pi; to vertex j and along the way goes r times around the (a,n — a) cycle,

(n + a — 2r — b) times around the (a + 1,n — @ — 1)—cycle and (r + b) times
around v;4+2. Such a walk has composition

]ae[ a2 [reramaon| 250 Jrern] 200, ]

n—a-—1 n—a—2

[ nat+n+a’+a
| n?t-n—-a?-a |’
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Case 2. 2r+b=n+a+1. Thenr=a+1and b =n —a — 1. The walk
that starts at vertex ¢, follows p;; to vertex j and along the way goes (n+a—1)
times around the (a + 1,n —a — 1)—cycle. Such a walk has composition

a+ 1 a+1 [na+n+a2+a’
[n—a—1]+(n+a_l)[n——a—l} [ 2 2 ]
Hence exp(D) < n? + na < n? + n(n = 2) = 2n? - 2n.

n‘—n-—a°—a
Lemma 9. Let D € D, ; be primitive. IfD is Type 8 in Table 1, then exp(D) <
2n? — 2n.

Proof. The proof is similar to the proof of Lemma 8, and we omit it. ~  [J

Lemma 10. Let D € D, be p'mmztwe If D is Type 9 in Table 1, then
exp(D) = 2n® —n. T

Proof. The cycle matrix of D is

1 1 1

M = n—-1 -+ n—-1 n-—-2

First, we prove that exp(D) < 2n? —n. Let (i,J) be any pair of vertices of
D, and p;; be the shortest path from i to j. Denote r = r(p;;) and b = b(p;;).
It is easy to see that n + nr —2r —b >0 and n — nr + r+ b > 0. We consider
the walk that starts at vertex 7, follows p;; to vertex j and along the way goes
(n + nr — 2r — b) times around the (1,n — 1)—cycle and (n — nr + r + b) times
around 7s42. Such a walk has composition -

r | ., | . | 1 B | o
[ b ]+(n+nr~2r—b) [ n— 1 }+(n—nr+fr+b)[ I } — { 2n2—-3n] .
Hence exp(D) < 2n° —n. S -

Next we prove that exp(D) > 2n? — n. Note that the composmons of cycles
Y1,Y2y -+, Vs, Ys+1 are the same. Now we set |

1 1
N—[n—l n—Z]' |
SuppoSe that (h, k) is a pair of nonnega,tive integers such that for all pairs (¢,7)

of vertices there is an (h, k)—walk from i to j. By c0n31der1ng 1= 7 =1, we see
- that there exist nonnegatlve integers u and v with "

BRI

Without loss of generality, We assume that the'the. path ('n, — 1) —n —1lisa
red-blue path and the path (n — 1) —» (n+ 1) — 1 is a blue-red path. Taking
i =mn and j = n + 1, then there is a unique path from 7 to j, and this path has

composition (0,n). Hence |
- h
Nz“[k—n]
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has a nonnegative integer solution. Then
Z:NHI h _ u —'N_l 0 _ u “‘n'+‘2 1 0 |
| k—n v n v n—1 -1 n
;
JOREE
| v | -n |~

So u > n. Taking i = n + 1 and j = n, then there is a unique path from 3 to j,
and this path has composition (2,7 — 2). Hence

Nz:[kféim}

has a nonnegative integer solution. Then

=y [ [

_jw| | -—n+2 1 | 2 1
v n—1 =1 n—2 |
So v > n. Thus

|
h+k=[1 1]N[u}_>_[n n—1][ﬂzzn2—n.

Hence exp(D) > 2n? — n. The lemma follows. | 0

Lemma 11. Let D € D, , be primitive. If D is Type 10 in Table 1, then
exp(D) < n? + n.

Proof. The cycle matrix of D is

a-+ 2 a+ 2 a a
M =
n—-a—2 -+ n—-a—2 n—a -+ N—a
a+1 a+1  a4+1 ]
n—a—1 -+ n—a—-1 n—a-2 |’

where 0 <a <n —2.

For any pair (7, 7) of vertices of D, we prove that there is a (na + n + 2a +
2,n? —na — 2a — 2)—walk from ¢ to j in D. Let p;; be the shortest path from ¢
to j. Denote r = r(p;;) and b = b(pw) It is easy to see that 0 <r<a+2and
0<b<n—a.

Ifi=j3=ke{nn+l,.. n-l—s} and the path ('n. 1) - k — 1 is a blue-blue
path. Then the walk that starts at vertex i, follows p;; to vertex j and along
the way goes (a + 2) times around the (a + 2,n — a — 2)—cycle, one time around
the (a,n — a)—cycle and (n — a — 2) times around the (a + 1,n — a — 1)—cycle.
Such a walk has composition |

[g]+4a+m[nf232]+[nfa]+4n—a—m{ni:il}
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| mna+n+2a+2
- [ n? —na-—2a—2 ] '
Otherwise, consider the following two cases:

Case 1. 0 <r < a+ 1. Then the walk that starts at vertex 2, follows p;; to
vertex j and along the way goes (a+1—r) times around the (a+2,n—a—2)—cycle,
(n — a — b) times around the (a + 1,n — a — 1)—cycle and (r + b) times around
Ys+2- Such a walk has composition |
[ Z ]+(a+1——'r) [ n-(-I—J;—Z—Z ]—{-(n—a—-b) [ ni:il }+('r+b) { ni:}-2 }

[ na+n+2a+2
- [ n? —na—2a— 2 } '

Case 2. r = a+ 2. Then b = n —a — 2. The walk that starts at vertex
i, follows pi; to vertex j and along the way goes (a + 1) times around the
(@ + 2,n — a — 2)—cycle, one time around the (a,n — a)—cycle and (n — a — 2)
times around the (a + 1,7 —a — 1)—cycle. Such a walk has composition

[nfﬁiz}ﬁa“)[nfﬁfg ] +[ " J’”(“_“"z)[ni:-lq }

n® —na—2a—2

__[ na+n+2a+2

-

Hence exp(D) < n? + n. B | - U

Lemma 12. Let D € D, be primitive. If D is Type 11 in Table 1_,' then
exp(D) < n? + n. | |

Proof. The proof is similar to the proof of Lemma 11, and we omit it. O

Lemma 13. Let D € D, , be primitive. If D is Type 12 in Table 1, then
exp(D) < n? +n.

Proof. The cycle matrix of D is

a+2 - a+2 a-+1 a+1 a-+1
n-a—2 -+ n—a—2 n—a-1 -+ n—a-1 n—a-2

where 0 <a<n-—2 | | |

For any pair (7, j) of vertices of D, we prove that there is a (na +n + 2a +
2,n% — na — 2a — 2)—walk from 7 to j in D. Let p;; be the shortest path from
i to j. Denote r = r(p;;) and b = b(pi;). It is easy to see that 0 < r < a+ 2,
0 € b < n—a. We consider the following two cases:

Case 1. 0 < r < a+ 1. Then the walk that starts at vertex i, follows p;; to
vertex j and along the way goes (a+1-r) times around the (a+2,n—a—2)—cycle,
(n —a — b) times around the (a + 1,n —a — 1)—cycle and (r + b) times around
vs+2. Such a walk has composition

[ ’ ]+<a+1_r) [ ek ]+(n_a_b) [ et ]+(r+b)[ el ]

M=

%
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na+n+2a+2
[ n? —na — 2a — 2 ] '

Case 2. r = a+2. Then b = n—a—2. The walk that starts at vertex iz, follows
pi; to vertex j and along the way goes a times around the (a+2,n—a—2)—cycle
and (n—a) times around the (a+1,n—a—1)—cycle. Such a walk has composition

a+ 2 + a+ 2 +(n—a) a+1 | mna+n+2a+2
n—-a-2 "% n—a-2 "l p—a-1| | n?-na—-2a-2 |
Hence exp(D) < n? +n. - 0

Lemma 14. Let D € D, , be primitive. If D is Type 13 in Table 1, then
exp(D) < 2n? — 2n. -

Proof. The cycle matrix of D is

| M:[ a a a+1 a+1 a+1l } |
| n—-a -+ n—a n—a—1 - n—a-1 n—a—-2}’
where 0 <a <n-—2.

For any pair (i,7) of vertices of D, we prove that there is a (na + n + a® +
a,n* —n —a? — a)—walk from ¢ to j in D. Let p;; be the shortest path from
i to j. Denote r = r(p;;) and b = b(p;;). It is easy to see that 0 < r < a+ 2,
0<r+bvb<nand0<2r+b<n+a+2. |

fi=j=ke{nn+l,...,n+s}and the path (n—1) — kK — 1 is a blue-blue
path. Then the walk that starts at vertex i, follows p;; to vertex j and along

the way goes (a+ 1) times around the (a,n —a)—cycle and n times around 7s.42.
Such a walk has composition

0 | a a+1 na+n+a’+a
[ 0 ] +(a+1)[ n-—a ] +n[ n—a-—2 ] - [ n?-n—a%—a ]
Otherwise, consider the following three cases:

Case 1. 0 < 2r 4+ b < n + a. Then the walk that starts at vertex z, follows
pi; to vertex j and along the way goes r times around the (a,n — a)—cycle,
(n + a — 2r — b) times around the (a + 1,n — a — 1)—cycle and (r + b) times
around 7s4+2. Such a walk has composition | |

[Z]+r[nia]+(n+a-—2r-—-b){ atl ]+(r+b)[ "‘+1]

n—a-—1 n—a-—2

n?—n—a—a

Case 2. 2r+b=n+a+1. Thenr=a+1and b=n—a—1. The walk

that starts at vertex 4, follows p;; to vertex j and along the way goes (n+a—1)
times around the (a + 1,n —a — 1)—cycle. Such a walk has composition

[ a-+1 a-+1 ]_[na+n+a2+a

n~a—1}+(n+a_1)[n—a—1 n®—n—a®—a

_ [ na+n+a2+a]
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Case 8. 2r+b=n+a+2. Thenr =a+2 and b =n —a — 2. The walk that
starts at vertex ¢, follows p;; to vertex j and along the way goes one time around
the (a,n — a)—cycle and (n + a — 2) times around the (a + 1,n —a — 1)—cycle.
Such a walk has composition -

a—+ 2 a a+1 _ na+n+a®+a
[n—a_2J+[n—a]+(n+a_2)[n—a——1 ] - [ n—n-—a®—a

Hence exp(D) < n? +na <n?+n(n —2) = 2n? — 2n. . O

Lemma 15. Let D € D, , be primitive. If D is Type 14 in Table 1, then
exp(D) < n? + n.

Proof. The proof is similar to the proof of Lemma 11, and we omit it. O

By Lemmas 2-15, we obtain the tight upper bound on the exponents of prim-
itive two-colored digraphs in D, s, and the characterizations of the extremal
two-colored digraphs.

Theorem 2. Let D € D, , be primitive. Then exp(D) < 2n%?—n, and exp(D) =
2n% —n if and only if |
- (1) The paths (n—1) — j — 1 for j = n, n+1 ..,n+ 8 contain only red-blue
paths and blue-red paths; and - -

(2) All arcs in the path1 -2 — -+ — (n —2) — (n — 1) are blue.
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