TIGHT UPPER BOUND ON THE EXPONENTS OF A CLASS OF TWO-COLORED DIGRAPHS

RONG WANG, YANLING SHAO* AND YUBIN GAO

ABSTRACT. A two-colored digraph D is primitive if there exist nonnegative integers h and k with h+k>0 such that for each pair (i,j) of vertices there exists an (h,k)-walk in D from i to j. The exponent of the primitive two-colored digraph D is the minimum value of h+k taken over all such h and k. In this paper, we give the tight upper bound on the exponents of a class of primitive two-colored digraphs with (s+1) n-cycles and one (n-1)-cycle, and the characterizations of the extremal two-colored digraphs.

AMS Mathematics Subject Classification: 05C15, 15A18

Key words and phrases: Exponent; two-colored digraph; primitive digraph

1. Introduction

A two-colored digraph is a digraph whose arcs are colored red or blue. We allow loops and both a red arc and blue arc from i to j for all pairs (i,j) of vertices. The two-colored digraph D is strongly connected provided for each pair (i,j) of vertices there is a walk in D from i to j. Given a walk w in D, let r(w) (respectively, b(w)) denote the number of red arcs (respectively, blue arcs) of w. We call w a (r(w), b(w))-walk, and define the composition of w to be the vector (r(w), b(w)) or

$$\left[\begin{array}{c} r(w) \\ b(w) \end{array}\right].$$

A two-colored digraph D is primitive if there exist nonnegative integers h and k with h + k > 0 such that for each pair (i, j) of vertices there exists an (h, k)-walk in D from i to j. The *exponent* of the primitive two-colored digraph D is the minimum value of h + k taken over all such h and k.

Let $C = \{\gamma_1, \gamma_2, \dots, \gamma_l\}$ be the set of cycles of a two-colored digraph D. Set M to be the $2 \times l$ matrix whose ith column is the composition of γ_i . We call M

Received April 28, 2007. *Corresponding author.

This work was supported by NNSF of China (No.10571163) and NSF of Shanxi (No.2007011017). © 2008 Korean SIGCAM and KSCAM.

the cycle matrix of D. The content of M, denoted content(M), is defined to be 0 if the rank of M is less than 2 and the greatest common divisor (i.e., g.c.d) of the determinants of all 2×2 submatrices of M, otherwise.

Lemma 1. ([1]) Let D be a two-colored digraph with cycle matrix M. Then D is primitive if and only if D is strongly connected and content(M) = 1.

There is a natural correspondence between two-colored digraphs and nonnegative matrix pairs (see[1]). The concept of the exponent of two-colored digraph arises in the study of finite Markov chains (see [1, 2]), and some results have already been obtained (see[1, 4, 5, 6, 7]).

In this paper, we consider the class of two-colored digraphs of order n + s, denoted by $D_{n,s}$, obtained by coloring the digraph as in Fig.1, where $n \geq 3$. If s = 0, then the digraph is Wielandt digraph of order n that has the largest exponent $(n-1)^2 + 1$. The paper [1] gives the tight bound on the exponents of families of primitive two-colored digraphs of order n whose uncolored digraph is Wielandt digraph. Motivated by the paper [1], we consider the exponents of $D_{n,s}$, where $s \geq 1$.

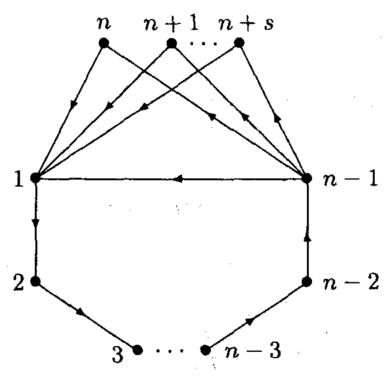


Fig. 1 The digraph

Clearly, for any $D \in D_{n,s}$, D has (s+1) n-cycles and one (n-1)-cycle. Without loss of generality, we may assume the arc $(n-1) \to 1$ is red. The path $(n-1) \to j \to 1$ has the following four cases for $j = n, n+1, \ldots, n+s$:

Case 1. The arcs $(n-1) \to j$ and $j \to 1$ are all red. In this case, we call the path $(n-1) \to j \to 1$ a red-red path.

Case 2. The arcs $(n-1) \rightarrow j$ and $j \rightarrow 1$ are all blue. In this case, we call the path $(n-1) \rightarrow j \rightarrow 1$ a blue-blue path.

Case 3. The arc $(n-1) \to j$ is red and the arc $j \to 1$ is blue. In this case, we call the path $(n-1) \to j \to 1$ a red-blue path.

Case 4. The arc $(n-1) \to j$ is blue and the arc $j \to 1$ is red. In this case, we call the path $(n-1) \to j \to 1$ a blue-red path.

Thus the two-colored digraphs in $D_{n,s}$ have the following fifteen cases:

Case 1. The paths $(n-1) \rightarrow j \rightarrow 1$ for $j = n, n+1, \ldots, n+s$ are all red-red paths.

Case 2. The paths $(n-1) \to j \to 1$ for $j = n, n+1, \ldots, n+s$ are all blue-blue paths.

Case 3. The paths $(n-1) \rightarrow j \rightarrow 1$ for $j = n, n+1, \ldots, n+s$ are all red-blue paths.

Case 4. The paths $(n-1) \to j \to 1$ for $j = n, n+1, \ldots, n+s$ are all blue-red paths.

Case 5. The paths $(n-1) \to j \to 1$ for $j = n, n+1, \ldots, n+s$ contain only red-red paths and blue-blue paths.

Case 6. The paths $(n-1) \to j \to 1$ for $j = n, n+1, \ldots, n+s$ contain only red-red paths and red-blue paths.

Case 7. The paths $(n-1) \to j \to 1$ for $j = n, n+1, \ldots, n+s$ contain only red-red paths and blue-red paths.

Case 8. The paths $(n-1) \to j \to 1$ for $j = n, n+1, \ldots, n+s$ contain only blue-blue paths and red-blue paths.

Case 9. The paths $(n-1) \to j \to 1$ for $j = n, n+1, \ldots, n+s$ contain only blue-blue paths and blue-red paths.

Case 10. The paths $(n-1) \to j \to 1$ for $j = n, n+1, \ldots, n+s$ contain only red-blue paths and blue-red paths.

Case 11. The paths $(n-1) \to j \to 1$ for $j = n, n+1, \ldots, n+s$ contain only red-red paths, blue-blue paths, and red-blue paths.

Case 12. The paths $(n-1) \to j \to 1$ for $j = n, n+1, \ldots, n+s$ contain only red-red paths, blue-blue paths, and blue-red paths.

Case 13. The paths $(n-1) \to j \to 1$ for $j = n, n+1, \ldots, n+s$ contain only red-red paths, red-blue paths, and blue-red paths.

Case 14. The paths $(n-1) \to j \to 1$ for $j = n, n+1, \ldots, n+s$ contain only blue-blue paths, red-blue paths, and blue-red paths.

Case 15. The paths $(n-1) \to j \to 1$ for $j = n, n+1, \ldots, n+s$ contain exactly red-red paths, blue-blue paths, red-blue paths and blue-red paths.

Throughout the remainder of the paper, for any $D \in D_{n,s}$, we let M be the cycle matrix of D, $\gamma_1, \gamma_2, \ldots, \gamma_{s+1}$ be (s+1) n-cycles of D, γ_{s+2} be the (n-1)-cycle of D, and the composition of γ_i be the ith column of M for $i = 1, 2, \ldots, s+2$.

2. The primitivity of a two-colored digraph in $D_{n,s}$

Let $D \in D_{n,s}$. Note that D is strongly connected. We assume that the path $1 \to 2 \to \cdots \to (n-2) \to (n-1)$ has a red arcs and (n-a-2) blue arcs. Clearly, $0 \le a \le n-2$.

For Case 1, the cycle matrix of D is

$$M = \left[\begin{array}{cccc} a+2 & \cdots & a+2 & a+1 \\ n-a-2 & \cdots & n-a-2 & n-a-2 \end{array} \right].$$

Then content(M) = n - a - 2, and so D is primitive if and only if a = n - 3. For Case 2, the cycle matrix of D is

$$M = \left[egin{array}{cccc} a & \cdots & a & a+1 \ n-a & \cdots & n-a & n-a-2 \end{array}
ight].$$

Then content(M) = n + a. Since $n \ge 3$ and $a \ge 0$, we have $n + a \ge 3$. So content $(M) \ne 1$, and D is not primitive.

For Case 3, the cycle matrix of D is

$$M = \left[\begin{array}{cccc} a+1 & \cdots & a+1 & a+1 \\ n-a-1 & \cdots & n-a-1 & n-a-2 \end{array} \right].$$

Then content(M) = a + 1, and so D is primitive if and only if a = 0.

For Case 4, the cycle matrix of D is

$$M = \left[\begin{array}{cccc} a+1 & \cdots & a+1 & a+1 \\ n-a-1 & \cdots & n-a-1 & n-a-2 \end{array} \right].$$

Then content(M) = a + 1, and so D is primitive if and only if a = 0.

For Case 5, the cycle matrix of D is

Then content(M) = g.c.d $\{2n, n-a-2, -n-a\}$, and so D is primitive if and only if n-a is odd.

For Case 6, the cycle matrix of D is

Then content(M) = g.c.d $\{n, n-a-2, -a-1\} = 1$, and so D is primitive.

For Case 7, the cycle matrix of D is

Then content $(M) = \text{g.c.d}\{n, n-a-2, -a-1\} = 1$, and so D is primitive. For Case 8, the cycle matrix of D is

Then content $(M) = \text{g.c.d}\{-n, -n-a, -a-1\} = 1$, and so D is primitive. For Case 9, the cycle matrix of D is

Then content $(M) = \text{g.c.d}\{-n, -n-a, -a-1\} = 1$, and so D is primitive. For Case 10, the cycle matrix of D is

$$M = \left[\begin{array}{cccc} a+1 & \cdots & a+1 & a+1 \\ n-a-1 & \cdots & n-a-1 & n-a-2 \end{array} \right].$$

Then content(M) = a + 1, and so D is primitive if and only if a = 0.

For Case 11, the cycle matrix of D is

$$M = \begin{bmatrix} a+2 & \cdots & a+2 & a & \cdots & a \\ n-a-2 & \cdots & n-a-2 & n-a & \cdots & n-a \end{bmatrix}.$$

$$a+1 & \cdots & a+1 & a+1 \\ n-a-1 & \cdots & n-a-1 & n-a-2 \end{bmatrix}.$$

Then content(M) = g.c.d $\{2n, n, n-a-2, -n, -n-a, -a-1\} = 1$, and so D is primitive.

For Case 12, the cycle matrix of D is

$$M = \begin{bmatrix} a+2 & \cdots & a+2 & a & \cdots & a \\ n-a-2 & \cdots & n-a-2 & n-a & \cdots & n-a \end{bmatrix}.$$

$$\begin{bmatrix} a+1 & \cdots & a+1 & a+1 \\ n-a-1 & \cdots & n-a-1 & n-a-2 \end{bmatrix}.$$

Then content(M) = g.c.d $\{2n, n, n-a-2, -n, -n-a, -a-1\} = 1$, and so D is primitive.

Table 1

Classification	All kinds of paths in the paths $(n-1) \rightarrow j \rightarrow 1$ for $j=n,n+1,\ldots,n+s$	a
Type 1	red-red paths	a = n - 3
Type 2	red-blue paths	a = 0
Type 3	blue-red paths	a = 0
Type 4	red-red paths and blue-blue paths	n-a is odd
Type 5	red-red paths and red-blue paths	
Type 6	red-red paths and blue-red paths	
Type 7	blue-blue paths and red-blue paths	
Type 8	blue-blue paths and blue-red paths	
Type 9	red-blue paths and blue-red paths	a = 0
Type 10	red-red paths, blue-blue paths and red-blue paths	
Type 11	red-red paths, blue-blue paths and blue-red paths	
Type 12	red-red paths, red-blue paths and blue-red paths	
Type 13	blue-blue paths, red-blue paths and blue-red paths	
Type 14	red-red paths, blue-blue paths, red-blue paths and blue-red paths	

For Case 13, the cycle matrix of D is

Then content(M) = g.c.d $\{n, n-a-2, -a-1\} = 1$, and so D is primitive.

For Case 14, the cycle matrix of D is

Then content $(M) = \text{g.c.d}\{-n, -n-a, -a-1\} = 1$, and so D is primitive. For Case 15, the cycle matrix of D is

$$M = \begin{bmatrix} a+2 & \cdots & a+2 & a & \cdots & a \\ n-a-2 & \cdots & n-a-2 & n-a & \cdots & n-a \end{bmatrix}$$

$$\begin{bmatrix} a+1 & \cdots & a+1 & a+1 \\ n-a-1 & \cdots & n-a-1 & n-a-2 \end{bmatrix}.$$

Then content(M) = g.c.d $\{2n, n, n-a-2, -n, -n-a, -a-1\} = 1$, and so D is primitive.

To combine above discussion, we have the following result.

Theorem 1. Let $D \in D_{n,s}$. Then D is primitive if and only if D is one of the fourteen types in Table 1.

3. The tight bound on the exponents

In this section, we give the tight upper bound on the exponents of primitive two-colored digraphs in $D_{n,s}$, and the characterizations of the extremal two-colored digraphs. The main result is Theorem 2.

Lemma 2. Let $D \in D_{n,s}$ be primitive. If D is Type 1 in Table 1, then $\exp(D) \le 2n^2 - 4n + 1$.

Proof. The cycle matrix of D is

$$M = \left[\begin{array}{cccc} n-1 & \cdots & n-1 & n-2 \\ 1 & \cdots & 1 & 1 \end{array} \right].$$

Clearly, D has only one blue arc, and the blue arc is in the path $1 \to 2 \to \cdots \to (n-2) \to (n-1)$.

For any pair (i,j) of vertices of D, we prove that there is a $(2n^2-6n+4,2n-3)$ —walk from i to j in D. Let p_{ij} be the shortest walk from i to j containing the blue arc. Denote $r = r(p_{ij})$ and $b = b(p_{ij})$. It is easy to see that b = 1 and $0 \le r \le 2n - 4$. We consider the walk that starts at vertex i, follows p_{ij} to vertex j and along the way goes (2n-4-r) times around the (n-1,1)—cycle and r times around γ_{s+2} . Such a walk has composition

$$\left[\begin{array}{c} r \\ 1 \end{array}\right] + (2n-4-r) \left[\begin{array}{c} n-1 \\ 1 \end{array}\right] + r \left[\begin{array}{c} n-2 \\ 1 \end{array}\right] = \left[\begin{array}{c} 2n^2-6n+4 \\ 2n-3 \end{array}\right].$$

Hence $\exp(D) \le 2n^2 - 4n + 1$.

Lemma 3. Let $D \in D_{n,s}$ be primitive. If D is Type 2 in Table 1, then $\exp(D) \le 2n^2 - 3n + 1$.

Proof. The cycle matrix of D is

$$M = \left[\begin{array}{cccc} 1 & \cdots & 1 & 1 \\ n-1 & \cdots & n-1 & n-2 \end{array} \right].$$

For any pair (i,j) of vertices of D, we prove that there is a $(2n-2, 2n^2-5n+3)$ —walk from i to j in D. Let p_{ij} be the shortest walk from i to j containing one red arc. Denote $r = r(p_{ij})$ and $b = b(p_{ij})$. It is easy to see that r = 1 and $0 \le b \le 2n - 3$. We consider the walk that starts at vertex i, follows p_{ij} to vertex j and along the way goes (2n-3-b) times around the (1, n-1)—cycle and b times around γ_{s+2} . Such a walk has composition

$$\left[\begin{array}{c}1\\b\end{array}\right]+(2n-3-b)\left[\begin{array}{c}1\\n-1\end{array}\right]+b\left[\begin{array}{c}1\\n-2\end{array}\right]=\left[\begin{array}{c}2n-2\\2n^2-5n+3\end{array}\right].$$

Hence $\exp(D) \le 2n^2 - 3n + 1$.

Lemma 4. Let $D \in D_{n,s}$ be primitive. If D is Type 3 in Table 1, then $\exp(D) \le 2n^2 - 3n + 1$.

Proof. The proof is similar to the proof of Lemma 3, and we omit it. \Box

Lemma 5. Let $D \in D_{n,s}$ be primitive. If D is Type 4 in Table 1, then $exp(D) \le 2n^2 - 2n$.

Proof. The cycle matrix of D is

where n-a is odd, and $0 \le a \le n-3$.

For any pair (i,j) of vertices of D, we prove that there is a $(2na+2n, 2n^2-2na-4n)$ -walk from i to j in D. Let p_{ij} be the shortest path from i to j. Denote $r=r(p_{ij})$ and $b=b(p_{ij})$. It is easy to see that $0 \le r \le a+2$ and $0 \le b \le n-a$. We consider the following two cases:

Case 1. b is even. Then $0 \le b \le n-a-1$ and $0 \le r+\frac{b}{2} \le \frac{1}{2}(n+a+3)$, and thus $n+a-r-\frac{b}{2} \ge 0$ and $n-a-2-\frac{b}{2} \ge 0$. The walk that starts at vertex i, follows p_{ij} to vertex j and along the way goes $\left(n+a-r-\frac{b}{2}\right)$ times around the (a+2,n-a-2)-cycle, $\left(n-a-2-\frac{b}{2}\right)$ times around the (a,n-a)-cycle and (r+b) times around γ_{s+2} . Such a walk has composition

$$\begin{bmatrix} r \\ b \end{bmatrix} + \left(n+a-r-\frac{b}{2}\right) \begin{bmatrix} a+2 \\ n-a-2 \end{bmatrix} + \left(n-a-2-\frac{b}{2}\right) \begin{bmatrix} a \\ n-a \end{bmatrix}$$

$$+(r+b) \begin{bmatrix} a+1 \\ n-a-2 \end{bmatrix} = \begin{bmatrix} 2na+2n \\ 2n^2-2na-4n \end{bmatrix}.$$

Case 2. b is odd. we consider the following three subcases:

Subcase 1. $r \neq a+2$ and $b \neq n-a$. Then $0 \leq r \leq a+1$ and $0 \leq b \leq n-a-2$, and thus $\frac{n+a}{2}-r-\frac{b}{2} \geq 0$ and $\frac{n-a-2}{2}-\frac{b}{2} \geq 0$. The walk that starts at vertex i, follows p_{ij} to vertex j and along the way goes $\left(\frac{n+a}{2}-r-\frac{b}{2}\right)$ times around the (a+2,n-a-2)-cycle, $\left(\frac{n-a-2}{2}-\frac{b}{2}\right)$ times around the (a,n-a)-cycle and (n+r+b)times around γ_{s+2} . Such a walk has composition

$$\begin{bmatrix} r \\ b \end{bmatrix} + \left(\frac{n+a}{2} - r - \frac{b}{2}\right) \begin{bmatrix} a+2 \\ n-a-2 \end{bmatrix} + \left(\frac{n-a-2}{2} - \frac{b}{2}\right) \begin{bmatrix} a \\ n-a \end{bmatrix}$$
$$+ (n+r+b) \begin{bmatrix} a+1 \\ n-a-2 \end{bmatrix} = \begin{bmatrix} 2na+2n \\ 2n^2 - 2na - 4n \end{bmatrix}.$$

Subcase 2. r = a + 2. Then b = n - a - 2. The walk that starts at vertex i, follows p_{ij} to vertex j and along the way goes (n + a - 1) times around the (a + 2, n - a - 2)-cycle and (n - a - 2) times around the (a, n - a)-cycle. Such a walk has composition

$$\begin{bmatrix} a+2 \\ n-a-2 \end{bmatrix} + (n+a-1) \begin{bmatrix} a+2 \\ n-a-2 \end{bmatrix} + (n-a-2) \begin{bmatrix} a \\ n-a \end{bmatrix}$$

$$= \begin{bmatrix} 2na+2n \\ 2n^2-2na-4n \end{bmatrix}.$$

Subcase 3. b = n-a. Then r = a. The walk that starts at vertex i, follows p_{ij} to vertex j and along the way goes (n+a) times around the (a+2, n-a-2)—cycle and (n-a-3) times around the (a, n-a)—cycle. Such a walk has composition

$$\begin{bmatrix} a \\ n-a \end{bmatrix} + (n+a) \begin{bmatrix} a+2 \\ n-a-2 \end{bmatrix} + (n-a-3) \begin{bmatrix} a \\ n-a \end{bmatrix} = \begin{bmatrix} 2na+2n \\ 2n^2-2na-4n \end{bmatrix}.$$
Hence $\exp(D) \le 2n^2-2n$.

Lemma 6. Let $D \in D_{n,s}$ be primitive. If D is Type 5 in Table 1, then $\exp(D) \le$

Proof. The cycle matrix of D is

where $0 \le a \le n-2$.

 $n^2 + n$.

For any pair (i,j) of vertices of D, we prove that there is a $(na+n+2a+3,n^2-na-2a-3)$ —walk from i to j in D. Let p_{ij} be the shortest path from i to j. Denote $r=r(p_{ij})$ and $b=b(p_{ij})$. It is easy to see that $0 \le r \le a+2$ and $0 \le b \le n-a-1$. We consider the walk that starts at vertex i, follows p_{ij} to vertex j and along the way goes (a+2-r) times around the (a+2,n-a-2)—cycle,

(n-a-1-b) times around the (a+1,n-a-1)-cycle and (r+b) times around γ_{s+2} . Such a walk has composition

$$\begin{bmatrix} r \\ b \end{bmatrix} + (a+2-r) \begin{bmatrix} a+2 \\ n-a-2 \end{bmatrix} + (n-a-1-b) \begin{bmatrix} a+1 \\ n-a-1 \end{bmatrix}$$
$$+(r+b) \begin{bmatrix} a+1 \\ n-a-2 \end{bmatrix} = \begin{bmatrix} na+n+2a+3 \\ n^2-na-2a-3 \end{bmatrix}.$$

Hence $\exp(D) \le n^2 + n$.

Lemma 7. Let $D \in D_{n,s}$ be primitive. If D is Type 6 in Table 1, then $\exp(D) \le n^2 + n$.

Proof. The proof is similar to the proof of Lemma 6, and we omit it. \Box

Lemma 8. Let $D \in D_{n,s}$ be primitive. If D is Type 7 in Table 1, then $\exp(D) \le 2n^2 - 2n$.

Proof. The cycle matrix of D is

where $0 \le a \le n-2$.

For any pair (i,j) of vertices of D, we prove that there is a $(na + n + a^2 + a, n^2 - n - a^2 - a)$ —walk from i to j in D. Let p_{ij} be the shortest path from i to j. Denote $r = r(p_{ij})$ and $b = b(p_{ij})$. It is easy to see that $0 \le r \le a + 1$, $0 \le r + b \le n$ and $0 \le 2r + b \le n + a + 1$.

If $i = j = k \in \{n, n+1, \ldots, n+s\}$ and the path $(n-1) \to k \to 1$ is a blue-blue path. Then the walk that starts at vertex i, follows p_{ij} to vertex j and along the way goes (a+1) times around the (a, n-a)-cycle and n times around γ_{s+2} . Such a walk has composition

$$\left[\begin{array}{c} 0 \\ 0 \end{array}\right] + (a+1) \left[\begin{array}{c} a \\ n-a \end{array}\right] + n \left[\begin{array}{c} a+1 \\ n-a-2 \end{array}\right] = \left[\begin{array}{c} na+n+a^2+a \\ n^2-n-a^2-a \end{array}\right].$$

Otherwise, consider the following two cases:

Case 1. $0 \le 2r + b \le n + a$. Then the walk that starts at vertex i, follows p_{ij} to vertex j and along the way goes r times around the (a, n - a)-cycle, (n + a - 2r - b) times around the (a + 1, n - a - 1)-cycle and (r + b) times around γ_{s+2} . Such a walk has composition

$$\begin{bmatrix} r \\ b \end{bmatrix} + r \begin{bmatrix} a \\ n-a \end{bmatrix} + (n+a-2r-b) \begin{bmatrix} a+1 \\ n-a-1 \end{bmatrix} + (r+b) \begin{bmatrix} a+1 \\ n-a-2 \end{bmatrix}$$

$$= \begin{bmatrix} na+n+a^2+a \\ n^2-n-a^2-a \end{bmatrix}.$$

Case 2. 2r + b = n + a + 1. Then r = a + 1 and b = n - a - 1. The walk that starts at vertex i, follows p_{ij} to vertex j and along the way goes (n + a - 1) times around the (a + 1, n - a - 1)-cycle. Such a walk has composition

$$\begin{bmatrix} a+1\\ n-a-1 \end{bmatrix}+(n+a-1)\begin{bmatrix} a+1\\ n-a-1 \end{bmatrix}=\begin{bmatrix} na+n+a^2+a\\ n^2-n-a^2-a \end{bmatrix}.$$
 Hence $\exp(D)\leq n^2+na\leq n^2+n(n-2)=2n^2-2n.$

Lemma 9. Let $D \in D_{n,s}$ be primitive. If D is Type 8 in Table 1, then $\exp(D) \le 2n^2 - 2n$.

Proof. The proof is similar to the proof of Lemma 8, and we omit it. \Box

Lemma 10. Let $D \in D_{n,s}$ be primitive. If D is Type 9 in Table 1, then $\exp(D) = 2n^2 - n$.

Proof. The cycle matrix of D is

$$M = \left[\begin{array}{cccc} 1 & \cdots & 1 & 1 \\ n-1 & \cdots & n-1 & n-2 \end{array} \right].$$

First, we prove that $\exp(D) \leq 2n^2 - n$. Let (i,j) be any pair of vertices of D, and p_{ij} be the shortest path from i to j. Denote $r = r(p_{ij})$ and $b = b(p_{ij})$. It is easy to see that $n + nr - 2r - b \geq 0$ and $n - nr + r + b \geq 0$. We consider the walk that starts at vertex i, follows p_{ij} to vertex j and along the way goes (n + nr - 2r - b) times around the (1, n - 1)-cycle and (n - nr + r + b) times around γ_{s+2} . Such a walk has composition

$$\left[\begin{array}{c} r \\ b \end{array}\right] + (n + nr - 2r - b) \left[\begin{array}{c} 1 \\ n - 1 \end{array}\right] + (n - nr + r + b) \left[\begin{array}{c} 1 \\ n - 2 \end{array}\right] = \left[\begin{array}{c} 2n \\ 2n^2 - 3n \end{array}\right].$$

Hence $\exp(D) \leq 2n^2 - n$.

Next, we prove that $\exp(D) \ge 2n^2 - n$. Note that the compositions of cycles $\gamma_1, \gamma_2, \ldots, \gamma_s, \gamma_{s+1}$ are the same. Now we set

$$N = \left[egin{array}{ccc} 1 & 1 & 1 \ n-1 & n-2 \end{array}
ight].$$

Suppose that (h, k) is a pair of nonnegative integers such that for all pairs (i, j) of vertices there is an (h, k)-walk from i to j. By considering i = j = 1, we see that there exist nonnegative integers u and v with

$$\left[egin{array}{c} h \ k \end{array}
ight] = N \left[egin{array}{c} u \ v \end{array}
ight].$$

Without loss of generality, We assume that the path $(n-1) \to n \to 1$ is a red-blue path and the path $(n-1) \to (n+1) \to 1$ is a blue-red path. Taking i = n and j = n+1, then there is a unique path from i to j, and this path has composition (0, n). Hence

$$Nz = \left[\begin{array}{c} h \\ k-n \end{array} \right]$$

has a nonnegative integer solution. Then

$$z = N^{-1} \begin{bmatrix} h \\ k - n \end{bmatrix} = \begin{bmatrix} u \\ v \end{bmatrix} - N^{-1} \begin{bmatrix} 0 \\ n \end{bmatrix} = \begin{bmatrix} u \\ v \end{bmatrix} - \begin{bmatrix} -n + 2 & 1 \\ n - 1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ n \end{bmatrix}$$
$$= \begin{bmatrix} u \\ v \end{bmatrix} - \begin{bmatrix} n \\ -n \end{bmatrix} \ge 0.$$

So $u \ge n$. Taking i = n + 1 and j = n, then there is a unique path from i to j, and this path has composition (2, n - 2). Hence

$$Nz = \left[\begin{array}{c} h-2 \\ k-(n-2) \end{array} \right]$$

has a nonnegative integer solution. Then

$$z = N^{-1} \begin{bmatrix} h-2 \\ k-(n-2) \end{bmatrix} = \begin{bmatrix} u \\ v \end{bmatrix} - N^{-1} \begin{bmatrix} 2 \\ n-2 \end{bmatrix}$$
$$= \begin{bmatrix} u \\ v \end{bmatrix} - \begin{bmatrix} -n+2 & 1 \\ n-1 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ n-2 \end{bmatrix} = \begin{bmatrix} u \\ v \end{bmatrix} - \begin{bmatrix} -n+2 \\ n \end{bmatrix} \ge 0.$$

So $v \ge n$. Thus

$$h+k=\left[egin{array}{ccc} 1 & 1\end{array}
ight]N\left[egin{array}{c} u \ v\end{array}
ight]\geq\left[egin{array}{ccc} n & n-1\end{array}
ight]\left[egin{array}{c} n \ n\end{array}
ight]=2n^2-n.$$

Hence $\exp(D) \ge 2n^2 - n$. The lemma follows.

Lemma 11. Let $D \in D_{n,s}$ be primitive. If D is Type 10 in Table 1, then $\exp(D) \le n^2 + n$.

Proof. The cycle matrix of D is

$$M = \begin{bmatrix} a+2 & \cdots & a+2 & a & \cdots & a \\ n-a-2 & \cdots & n-a-2 & n-a & \cdots & n-a \end{bmatrix},$$

$$a+1 & \cdots & a+1 & a+1 \\ n-a-1 & \cdots & n-a-1 & n-a-2 \end{bmatrix},$$

where $0 \le a \le n-2$.

For any pair (i, j) of vertices of D, we prove that there is a $(na + n + 2a + 2, n^2 - na - 2a - 2)$ —walk from i to j in D. Let p_{ij} be the shortest path from i to j. Denote $r = r(p_{ij})$ and $b = b(p_{ij})$. It is easy to see that $0 \le r \le a + 2$ and $0 \le b \le n - a$.

If $i=j=k\in\{n,n+1,\ldots,n+s\}$ and the path $(n-1)\to k\to 1$ is a blue-blue path. Then the walk that starts at vertex i, follows p_{ij} to vertex j and along the way goes (a+2) times around the (a+2,n-a-2)-cycle, one time around the (a,n-a)-cycle and (n-a-2) times around the (a+1,n-a-1)-cycle. Such a walk has composition

$$\left[\begin{array}{c} 0 \\ 0 \end{array}\right] + (a+2) \left[\begin{array}{c} a+2 \\ n-a-2 \end{array}\right] + \left[\begin{array}{c} a \\ n-a \end{array}\right] + (n-a-2) \left[\begin{array}{c} a+1 \\ n-a-1 \end{array}\right]$$

$$= \left[\begin{array}{c} na+n+2a+2\\ n^2-na-2a-2 \end{array}\right].$$

Otherwise, consider the following two cases:

Case 1. $0 \le r \le a+1$. Then the walk that starts at vertex i, follows p_{ij} to vertex j and along the way goes (a+1-r) times around the (a+2, n-a-2)-cycle, (n-a-b) times around the (a+1, n-a-1)-cycle and (r+b) times around γ_{s+2} . Such a walk has composition

$$\begin{bmatrix} r \\ b \end{bmatrix} + (a+1-r) \begin{bmatrix} a+2 \\ n-a-2 \end{bmatrix} + (n-a-b) \begin{bmatrix} a+1 \\ n-a-1 \end{bmatrix} + (r+b) \begin{bmatrix} a+1 \\ n-a-2 \end{bmatrix}$$
$$= \begin{bmatrix} na+n+2a+2 \\ n^2-na-2a-2 \end{bmatrix}.$$

Case 2. r = a + 2. Then b = n - a - 2. The walk that starts at vertex i, follows p_{ij} to vertex j and along the way goes (a + 1) times around the (a + 2, n - a - 2)-cycle, one time around the (a, n - a)-cycle and (n - a - 2) times around the (a + 1, n - a - 1)-cycle. Such a walk has composition

$$\begin{bmatrix} a+2 \\ n-a-2 \end{bmatrix} + (a+1) \begin{bmatrix} a+2 \\ n-a-2 \end{bmatrix} + \begin{bmatrix} a \\ n-a \end{bmatrix} + (n-a-2) \begin{bmatrix} a+1 \\ n-a-1 \end{bmatrix}$$
$$= \begin{bmatrix} na+n+2a+2 \\ n^2-na-2a-2 \end{bmatrix}.$$

Hence $\exp(D) \le n^2 + n$.

Lemma 12. Let $D \in D_{n,s}$ be primitive. If D is Type 11 in Table 1, then $\exp(D) \leq n^2 + n$.

Proof. The proof is similar to the proof of Lemma 11, and we omit it. \Box

Lemma 13. Let $D \in D_{n,s}$ be primitive. If D is Type 12 in Table 1, then $\exp(D) \le n^2 + n$.

Proof. The cycle matrix of D is

where $0 \le a \le n-2$.

For any pair (i,j) of vertices of D, we prove that there is a $(na+n+2a+2,n^2-na-2a-2)$ —walk from i to j in D. Let p_{ij} be the shortest path from i to j. Denote $r=r(p_{ij})$ and $b=b(p_{ij})$. It is easy to see that $0 \le r \le a+2$, $0 \le b \le n-a$. We consider the following two cases:

Case 1. $0 \le r \le a+1$. Then the walk that starts at vertex i, follows p_{ij} to vertex j and along the way goes (a+1-r) times around the (a+2, n-a-2)-cycle, (n-a-b) times around the (a+1, n-a-1)-cycle and (r+b) times around γ_{s+2} . Such a walk has composition

$$\left[\begin{array}{c} r \\ b \end{array}\right] + (a+1-r) \left[\begin{array}{c} a+2 \\ n-a-2 \end{array}\right] + (n-a-b) \left[\begin{array}{c} a+1 \\ n-a-1 \end{array}\right] + (r+b) \left[\begin{array}{c} a+1 \\ n-a-2 \end{array}\right]$$

$$=\left[\begin{array}{c}na+n+2a+2\\n^2-na-2a-2\end{array}\right].$$

Case 2. r = a+2. Then b = n-a-2. The walk that starts at vertex i, follows p_{ij} to vertex j and along the way goes a times around the (a+2, n-a-2)-cycle and (n-a) times around the (a+1, n-a-1)-cycle. Such a walk has composition

$$\begin{bmatrix} a+2 \\ n-a-2 \end{bmatrix} + a \begin{bmatrix} a+2 \\ n-a-2 \end{bmatrix} + (n-a) \begin{bmatrix} a+1 \\ n-a-1 \end{bmatrix} = \begin{bmatrix} na+n+2a+2 \\ n^2-na-2a-2 \end{bmatrix}.$$

Hence $\exp(D) \le n^2 + n$.

Lemma 14. Let $D \in D_{n,s}$ be primitive. If D is Type 13 in Table 1, then $\exp(D) \leq 2n^2 - 2n$.

Proof. The cycle matrix of D is

where $0 \le a \le n-2$.

For any pair (i,j) of vertices of D, we prove that there is a $(na + n + a^2 + a, n^2 - n - a^2 - a)$ —walk from i to j in D. Let p_{ij} be the shortest path from i to j. Denote $r = r(p_{ij})$ and $b = b(p_{ij})$. It is easy to see that $0 \le r \le a + 2$, $0 \le r + b \le n$ and $0 \le 2r + b \le n + a + 2$.

If $i = j = k \in \{n, n+1, \ldots, n+s\}$ and the path $(n-1) \to k \to 1$ is a blue-blue path. Then the walk that starts at vertex i, follows p_{ij} to vertex j and along the way goes (a+1) times around the (a, n-a)-cycle and n times around γ_{s+2} . Such a walk has composition

$$\left[\begin{array}{c} 0 \\ 0 \end{array}\right] + (a+1) \left[\begin{array}{c} a \\ n-a \end{array}\right] + n \left[\begin{array}{c} a+1 \\ n-a-2 \end{array}\right] = \left[\begin{array}{c} na+n+a^2+a \\ n^2-n-a^2-a \end{array}\right].$$

Otherwise, consider the following three cases:

Case 1. $0 \le 2r + b \le n + a$. Then the walk that starts at vertex i, follows p_{ij} to vertex j and along the way goes r times around the (a, n - a)-cycle, (n + a - 2r - b) times around the (a + 1, n - a - 1)-cycle and (r + b) times around γ_{s+2} . Such a walk has composition

$$\begin{bmatrix} r \\ b \end{bmatrix} + r \begin{bmatrix} a \\ n-a \end{bmatrix} + (n+a-2r-b) \begin{bmatrix} a+1 \\ n-a-1 \end{bmatrix} + (r+b) \begin{bmatrix} a+1 \\ n-a-2 \end{bmatrix}$$
$$= \begin{bmatrix} na+n+a^2+a \\ n^2-n-a^2-a \end{bmatrix}.$$

Case 2. 2r + b = n + a + 1. Then r = a + 1 and b = n - a - 1. The walk that starts at vertex i, follows p_{ij} to vertex j and along the way goes (n + a - 1) times around the (a + 1, n - a - 1)-cycle. Such a walk has composition

$$\left[\begin{array}{c}a+1\\n-a-1\end{array}\right]+(n+a-1)\left[\begin{array}{c}a+1\\n-a-1\end{array}\right]=\left[\begin{array}{c}na+n+a^2+a\\n^2-n-a^2-a\end{array}\right].$$

Case 3. 2r + b = n + a + 2. Then r = a + 2 and b = n - a - 2. The walk that starts at vertex i, follows p_{ij} to vertex j and along the way goes one time around the (a, n - a)-cycle and (n + a - 2) times around the (a + 1, n - a - 1)-cycle. Such a walk has composition

$$\begin{bmatrix} a+2 \\ n-a-2 \end{bmatrix} + \begin{bmatrix} a \\ n-a \end{bmatrix} + (n+a-2) \begin{bmatrix} a+1 \\ n-a-1 \end{bmatrix} = \begin{bmatrix} na+n+a^2+a \\ n^2-n-a^2-a \end{bmatrix}.$$
Hence $\exp(D) \le n^2 + na \le n^2 + n(n-2) = 2n^2 - 2n.$

Lemma 15. Let $D \in D_{n,s}$ be primitive. If D is Type 14 in Table 1, then $\exp(D) \le n^2 + n$.

Proof. The proof is similar to the proof of Lemma 11, and we omit it.

By Lemmas 2–15, we obtain the tight upper bound on the exponents of primitive two-colored digraphs in $D_{n,s}$, and the characterizations of the extremal two-colored digraphs.

Theorem 2. Let $D \in D_{n,s}$ be primitive. Then $\exp(D) \le 2n^2 - n$, and $\exp(D) = 2n^2 - n$ if and only if

- (1) The paths $(n-1) \rightarrow j \rightarrow 1$ for $j = n, n+1, \ldots, n+s$ contain only red-blue paths and blue-red paths; and
 - (2) All arcs in the path $1 \to 2 \to \cdots \to (n-2) \to (n-1)$ are blue.

REFERENCES

- 1. B.L. Shader and S. Suwilo, Exponents of nonnegative matrix pairs, Linear Algebra Appl. 363(2003), 275-293.
- 2. A. Berman and R. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Classics in Applied Mathematics, vol. 9, SIAM, Philadelphia, PA, 1994.
- 3. R.A. Brualdi and H.J. Ryser, Combinatorial Matrix Theory, Encyclopedia of Mathematics and its Applications, vol. 39, Cambridge University Press, Cambridge, 1991.
- 4. B.L. Shader and P. van den Driessche, Exponents of tuples of nonnegative matrices, Linear Algebra Appl. 356(2002), 123-134.
- 5. L.B. Beasley and S. Kirkland, A note on k-primitive directed graphs with two cycles, Linear Algebra Appl. 373(2003), 67-74.
- 6. Yubin Gao and Yanling Shao, Exponents of two-colored digraphs with two cycles, Linear Algebra Appl. 407(2005), 263-276.
- 7. Yanling Shao, Yubin Gao, and Liang Sun, Exponents of a class of two-colored digraphs, Linear and Multilinear Algebra 53:3(2005), 175–188.

Rong Wang is a master of Department of Mathematics, North University of China. Department of Mathematics, North University of China, Taiyuan, Shanxi 030051, P.R. China

email: rong26wang@163.com

Yanling Shao, Professor and Ph.D. Advisor, received her Ph.D at Beijing Institute of Technology.

Department of Mathematics, North University of China, Taiyuan, Shanxi 030051, P.R. China

email: ylshao@nuc.edu.cn

Yubin Gao, Professor and Ph.D. Advisor, received his Ph.D at University of Science and Technology of China.

Department of Mathematics, North University of China, Taiyuan, Shanxi 030051, P.R. China

email: ylshao@nuc.edu.cn