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AN ORDER LEVEL INVENTORY MODEL FOR PERISHABLE
SEASONAL PRODUCTS WITH DEMAND FLUCTUATION

S. PANDA* AND M. BASU

ABSTRACT. A single item order level inventory model for perishable prod-
ucts is considered in which a constant fraction of on hand inventory spoils
per unit time. Demand linearly depends on time. The fluctuation of de-
mand is taken into account to determine minimum total cost of the system.
Both discrete and continuous fluctuations are considered. The model is
developed and solved analytically for infinite time horizon. A numerical
example is presented for finite time horizon. Sensitivity analysis of the
model is carried out.
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1. Introduction

‘This article is motivated by an actual problem presented to one of the au-
thors by a small retailer of cold drinks of one of the metro railway stations in
Kolkata. During the summer days the demand of cold drinks increases with
weather significantly. But due to uncontrollable fluctuation of temperature de-
mand fluctuates, resulting in a significant change on system running costs. The
question pertains what will be the order level for the summer season to minimize
the total system running cost. | |

Researchers have extensively discussed various types of inventory model with
time varying demand after the introduction of classical inventory model in the
literature by considering a uniform demand rate[16]. Donalson|3] first overruled
the static demand rate, which is unrealistic in many practical situations, by
introducing a time varying demand pattern in inventory modeling. Since then
several researchers have studied inventory lot-sizing problems with time varying
demand under a variety of modelling assumptions. Mainly four types of demand
patterns have been found in the literature: (1) linear positive or negative, (2)
quadratic, (3) exponentially increasing or decreasing and (4) ramp type (Hill[g],
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Wu et.al[17], Giri et.al.[5], Mondal and Pal|[13]). Linear time dependent demand
represents uniform change in demand per unit time. Quadratic time dependent
demand indicates accelerated growth or decline in demand rate in uniform way.
Khanra and Chaudhuri[10] noted that, this may be used as an alternative for
the extraordinarily high rate of change for exponential demand. The ramp-type
demand demonstrates a time period classified demand pattern. In different time
periods the demand is either constant or its rate of change is different. These
time dependent demand patterns indicate uniform rate of change and never indi-
cate any fluctuation of demand and thus is not reflected on order level and total
cost. This is unrealistic to some extent. And the present authors feel that for
smooth and efficient running of business affairs proper accountability of order
level and system running cost is essential under the effects of demand fluctua-
tion. Fluctuation in demand may be simply defined as the small perturbation in
demand rate caused by the impact of several marketing parameters. It is seldom
found in real market that demand is smooth rather than a small perturbation
in it. This perturbation is caused by the effects of several market parameters
(eg. increment in unit selling price, competitors pricing strategy, advertisement,
environmental effects, etc.), which may be termed as fluctuating parameters.
The demand fluctuation due to the impact of fluctuating parameters may have
significant effect on the order level and system running cost. The effect of de-
mand fluctuation can be treated through the identification of all the fluctuating
parameters which may have effects on a particular inventory system and then
directly calculating their effects on the system by introducing them in demand.
However, fluctuation in demand is uncertain, uncontrollable and unpredictable.
Thus, it is random in nature and the behaviour of demand fluctuation may be
analysed by considering probability distributions for fluctuating parameters.

In the literature, perishability of inventories has been discussed extensively.
Nahmias([14] classified perishability in terms of fixed life time and random life
time. Ghare and Scharder[4], the first proponents of deterioration, categorized it
into three types: direct spoilage, physical depletion and deterioration. Yang and
Wee[18] defined deterioration as decay, damage, spoilage, evaporation, obsolence,
loss of utility or loss of marginal value of a commodity that results in a decreasing
usefulness from the original one. Since then, several inventory modelling aspects
have been examined by considering deterioration. There is a vast literature on
deteriorating inventory, the outline of which can be found in research articles by
Nahmias(15], Raaft[15] and Goyal and Giri[6].

In this paper, we consider an order level inventory problem for a deteriorating
item having linear time dependent demand. Since the object is to determine the
order level for entire summer season to minimize the system cost under fluctu-
ating demand environment, fluctuation is taken into account by introducing a
fluctuation parameter in demand. The inventory is assumed to deteriorate at
a constant rate. Shortages are not allowed. Effect of fluctuation parameter is
considered for both discrete and continuous case. The rest of the paper is orga-
nized as follows. In the next section assumptions and notations are provided for
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the development of the model. The model is developed and an algorithm to find
the eptimal order level is given in section 3. Section 4 deals with a numerical
example. Summary and some concluding remarks are provided in section 5.

2. Assumptions and notations

The following assumptions and notations are used in developing the model.
1. The time dependent demand rate is of the form

D(t) = o+ B(r — b}t

where [ is the rate at which demand increases or decreases. 7 is the fluctuating
parameter and b is it’s value under standard condition. 7 = b indicates that when
the fluctuation has no effect with time, demand is a. If 7 > b, the fluctuation
in demand is positive and has an effect with time, resulting in a increment in
demand. 7 < b indicates that fluctuation has a negative effect and leads to a
decrement in demand. The fluctuating parameter 7 is a random variable, which
may be discrete or continuous.

2. Replenishment is instantaneous.

3. Shortages are not allowed.

4. A constant fraction 8, 0 < § << 1 of on hand inventory deteriorates per
unit time. |

5. Cy is the set up cost per set up. (3 is the holding cost per unit per unit

time. C3 is the deterioration cost per unit. H is the length of the finite time
horizon.

3. Model formulation and solution

Let I;(t) be the inventory level at time (K;-, 4+ t) during the #th replenish-
ment cycle, (0 < t < T;),2 = 1,2,3,--- where K;_; is the total time elapsed
upto and including the (i — 1)th cycle and T; be the length of i-th cycle. The

instantaneous level of inventory during the #-th cycle is governed by the followin
differential equation - | .

al;(t)
dt

with terminal condition I;(T;) = 0, i.e. inventory reaches zero level at the end
of the cycle..

Solving equation (1) we have

+601;(t) = -D(K;-1 +1), 0L<t<T; (1)

Ii(t) = 9—12- [A0{exp[d(T; — t)] — 1} — B(6t — 1) + B(0T; — 1) expl0(T; — t)]]( )
2
where A=a+ B(t - b)K;_.,, B=p8(1-0)

Total cost of the system in the i-th replenishment cycle is the sum of set up cost,
holding cost(HC) and deterioration cost(DC) which are given by
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T; 02 0Ti2
He = hwa= 3 [-au +on - eoppm)) - B -1
0
B
-G08 -1 - exploTi)
DC = 039/ I (t)dt = % [——A(l + 0T; — exp[0T;]) — B( g‘ - T;)
0

_ .g.(eT,; -1)(1 - exp[9Tz'])J

Therefore, the total inventory cost per unit time in the #th cycle is given by

' 1
m(L;) = =(Ci+HC +DC) (3)
= —|Ci1+(Ca+0C3)—= | —A(1+0T; — exP[eTi]) -B\ < —-Ti
Ti 62 2
B

- F6T-1)(- exp[gT,;])]]

Let us now consider the effect of fluctuating parameter 7 on 7;(7;). Since 7 is
a random variable, it may be discrete or continuous. We consider both cases
separately.

3.1. Discrete fluctuation

‘The assumption of discrete behaviour of 7 may be justified in the sense that
the demand of cold drinks, winter garments, vegetables, fruits, fishes, etc do
fluctuate frequently due to the fluctuation of temperature, advertisement, new
fashion trends and for several other reasons. And this fluctuation occurs in
discrete way. If the parameter 7 fluctuates by assuming the values 75, (7 =
0,1,2,3,---m) with probability P(t = 7;) =p;, (j =0,1,2,3,---m) such that
}:;’;o p; = 1 and p; > 0 for all j. The expected total cost of the system in the
i-th cycle is then given by

Eni(T;) =)  m(T.)p; (4)
_ =
We need to determine the value of T; to minimize (4). The necessary condition

for this is dEw;i(T;)/dT; = 0. Since the rate of deterioration 8 is very small,
using the approximation exp|0T;| = (2 + 6713)/(2 — 6T;) and simplifying we get,

| 'T.3+ 2 E;’::O p; [a + ﬁK'_1(Tj — b)] T2 + 2901 T. (5)
' 383 5o(T; — b)p; Y 3B(Ca+6C3) (T — by
4C4

_ _ =0
- 3B(Ca+ 6C3) 3 25— (75 — b)p;
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If ; —b =1 for all 7, then the fluctuation has no effect on demand and the
demand is simply linear time dependent. Thus, it has no effect on lot-size and
total cost. Then, equation (5) becomes

2(0! + BK;-1) o 20C, 4Ch
T‘i + Ti - —
35 3B(C> + 0C3) 38(Cs + 0C3)
which agrees with the result of Chung and Ting[2] as expected. Now

d*Emi(T; Cy + 6C
dg_‘é ) _— 2 = 3 [a exp[QT@] + {(T’t + K‘i-—-l) exp[eTi]

T3y 0 (6)

1 m
+ 2 (exploTs) - 1)}8 z:,)( ~b)p;| >0 VI; >0

m
if Z(Tj — b)p; > 0. Hence the sufficient condition for the minimization of
—

7
ETCU,,(T;) holds if Z?:O(Tj —_— b)pj > 0.
3.2. Continuous fluctuation

In this case we assume that the fluctuating parameter 7 is a continuous ran-

dom variable having probability density function f(7). The expected total cost
of the system is given by |

Em,(T;) = [w i(Ti, 75) f(7)dT | (7)
Which simplifies to
1 CQ + 903 '
Emn(T;) = T {C’l + 7P (1 + 6T; — expl0Ti])(a + BKi—1[E(7) — b}) (8)
2 "
ey -8 (55 - 72) - 22D Ao, - 1)1 — expiomy) |

The necessary condition for the minimization of Em;(T;) yields after simplifica-
tion
73 4 A0t BEAIE() —bll 7 20C
- 3p[E(r) - b] 38(Ca + 6C3)|E(T) ~ b]
_ | 4C 1 —0 '

36(Cz + 0C3)[E(T) — b]
Now differentiating Ew;(T;) twice with respect to T; we have
dEn?(T;)  C2+6Cs

aT? T;

Ti' - (9)

\aexpl9T] + {(T; + Ki-1) expl6Ti

+ (expl6T] ~ D}BE(r - b)|

Clearly, dEn2(T;)/dT? > 0if E(7)—b > 0 and T; > 0 and the sufficient condition
holds always.
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3.3. An algorithm for solution in finite time horizon

Though the above model is developed for infinite time horizon, it can also
be applicable for finite time horizon. In this section we present an algorithm to
apply it in general case using goal programming. The algorithm is as follows,

Step-1: K;,_1 = 0, number of orders (n) = 0, i=1, EnF, =0
Step-2: Repeat Step 8 and Step 4 until (K;—; < H < K;)
Step-3: Find T; using any iterative method
Step-4: Compute Em;(T;) and I;(0), K; =K, 1+ T;, i =1+ 1
Step-5: If (H—-K;—1 > K; — H) then

n =1, EnF, = En;(T;)

solve the goal programming problem

max(d] + d3)

subject to call Procedure P(n)

else

n=1— 1, E‘JTFn :Em_l(Ti._l)

solve the goal programming problem

max(dy + d5 )

subject to call Procedure P(n)
Step 6: write n, T;, Eni(T;), I,(0) fori=1,2,-

Procedure P(n)
Ern,(T,) +dy —df = EnF,
Kn1+Tp+d, —df =H
dfd; =0
did; =0
Tn,df,dy,dy,dy >0

ErnF, is the system cost per unit time in the n-th cycle, obtained due to
dissatisfaction of the time bound H. d;, di are the under and over deviational
variables for the expected unit cost. And d;, dJ are the under and over devia-
tional variables for the last cycle time. The optimization problems in Step-5 are
represented in goal programming formulation. From the decision maker’s point
of view if H — K,;_1 < K; — H, there are two objectives to be satisfied. Firstly,
the final order cycle will not be considered and (i-1)th cycle will be continued
up to H. Secondly E7F, should be minimized. A way to achieve these two
conflicting objects is to apply goal programming. Since, the number of order
cycles remains same and H — K;_; < K; — H, the objectives of maximization of
the over deviational variable df in cost constraint and under deviational variable
d, in time constraint will lead to achieve both goals simultaneously. Similarly,
if H — K;_; > K; — H then i-th cycle will be considered and d-'f and d; should
be maximized simultaneously. The constraints df d; = 0 and dJ d; = 0 indicate
the positiveness of one deviational variable at a time and preclude the positive-
ness of the other. Goal programming was developed by Charnes and Cooper[l]
and extended by Lee{12], Ignizio[9].
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However, several algorithms are availabe in the literature (Goyal and Giri[7},
Khouja and Goyal{11], Khanra and Chaudhuri[10}, etc.), in which the adjusted

optimal replenishment interval Ti/ has been calculated . This adjustment is done
to equalize the over or under deviation for the length of finite time horizon, arises

for the inequality of Z?’:—f Tj or y ., T; with H. This adjustment is computed
through T/ = Ty(H/ Y71 T;) if H = Y0"'T; < Y7, Tj — H, otherwise,
Tz./ = T;(H/ Z?,:l T;). Using the adjusted optimal replenishment interval T,,;/

one may calculate T CUi(Ti/ ) and I;(0),i = 1,2---. The main limitation of the
algorithm addresses the number of decision variable. If it is more than one then
adjustment of any one may lead to the non-achievement of the optimal values
of the remaining variables and hence the optimal system cost. But, instead of
adjusting each cycle length over the finite time horizon, if the last cycle length
is determined by minimizing the over and under deviation of H — K;_; or K; —
H from H and at the same time over or under deviation of the cost for last
order cycle then we may get better result than the algorithms presented in the
literature. Simultaneously, the crisis for non-achievement of optimal values of
other decision variables due to adjustment of one variable may be overcome.

From this point of view, the algorithm is general in nature to solve these types
of problem.

4. An Illustrative example

To expose the development of the model, we consider the case reported above.
In which the parameter values are taken as, « = 1000/month, 8 = 150, 8 = 0.03,
C; = $200.0, Cy = $3.0, C3 = $0.4. According to the meteorological department
the summer season lasts for about 5 months and the temperature lies between
35 to 41 degree Celsius. Past records of meteorological department also suggest
that the temperature follows the following probability distribution,

Temperature(°C): 35 36 37 38 39 40 41
Probability: 0.11 0.12 0.18 0.2 0.13 0.15 0.11

Since, the maximum probability corresponds to 38 degree Celsius, we assume
that b = 38. The results are represented in Table-1. In Table-2, the optimal cycle
length and associated inventory cost and optimal order quantity is depicted when
the temperature fluctuation has no effect. In the case of continuous fluctuation,
it 1s assumed that the temperature lies between 35 to 42 degree Celsius and it
follows the uniform distribution

1
-, 1f 35 <17<42
fry={ 7 ¥ IS =
0, otherwsise
Note that there is a discrepancy for the maximum value of 7 in discrete and
continuous case. This is allowed deliberately in order to demonstrate Step-5 of

the algorithm. The results are given in Table-3. From Table-1, it is found that
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Table-1: Optimal cycle length total cost and order quantity in the i-th order
cycle under discrete fluctuation

S. Panda and M. Basu

K

T;

ETC

I

n
1
2
3
4
9
6

0
0.896509
1.792421
2.687733
3.582457
4.47659

0.896509
0.895912
0.895312
0.894724
0.894133
0.523418

398.869
398.870
398.869
398.872
398.873
267.963

909.287

909.894
910.496
911.107
911.713
531.3

when the fluctuation in demand is taken into account and it is discrete in na-
ture, 6 orders should be placed, the total cycle length being 4.47695+0.523418 =
5.000008, almost equal to 5, ET'C* = 2262.316 and total amount of order quan-
tity is 5083.797. Note that when fluctuation has no effect on demand, number
of order cycles is 7, the total cycle length is 4.48705140.512919 = 4.99997, TC*
= 2628.848, which is 13.943% higher than that under discrete fluctuation, and

Table-2: Optimal cycle length total cost and order quantity in the i-th order

cycle without fluctuation

K;

T;

TC

I

I OO W N =D

5

0.82465

1.612119
2.368166
3.09717
3.802552
4.487051

0.82465
0.787469
0.756047
0.729004
0.705382
0.684499

381.862

384.142
385.91
387.319
388.47
389.426
311.719

846.788

0942.659

993.125
1039.29
1081.94
1121.66
884.714

0.5612919

I* = 6950.176 which is also 26.854% higher than that of discrete fluctuation.
From Table-3 it is found that if the fluctuation is continuous then number of
orders to be placed is 6, ETC* = 2624.537, -0.164% higher than TC*, I* =
6040.366, 13.09% less than I* of no fluctuation case and total cycle length is
4.077185+0.922819 = 5.000004. For discrete fluctuation and when the fluctua-
tion has no effect H — 23:1 T; > Z?___l T;—H and H — Z?:1 T; > Z;zl T;,—H
respectively. Thus we have to consider a 6th and a 7th order cycle in the case
of discrete fluctuation and no fluctuation respectively. And in both the cases
di and dJ are maximized. Whereas for continuous fluctuation H — Z T <

Z j=1 1 — H, so the same order cycle is modified by the maximization of d+ and

d, : 'The number of orders is less by one in both the discrete and the continuous
case in comparison to that of the no fluctuation case. Therefore, the fluctuation
(discrete or continuous) in demand has a significant effect on the number orders,
lot-size as well as on total system cost and suggests to consider the fluctuation
in demand in inventory accounting.
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Table-3: Optimal cycle length total cost and order quantity in the i-th order cycle

under continuous fluctuation

n Ki_1 T; ETC I

1 0 0.85729 389.409 896.447
2 085729 0.834285 390.796 925.673
3 1.691575 0.813528 390.871 953.243
4 2.505103 0.794666 391.456 979.373
5 3.299769 0.777416 391.968 1004.23
6 4.077185 0.922819 670.007 1254.37

In Table-4 some sensitivity analysis on the number of orders and on the expected
total cost in discrete case is depicted by changing the parameter values —40%,
—20%, 20% and 40%, taking one at a time and keeping the remaining unchanged.
Similarly the sensitivity analysis for other two cases can be performed. It is found
from expected total cost that the model is highly sensitive to the error in the
estimation of the parameter values a, C; and C, and moderately sensitive to
the error in the estimation of the parameters 8 and C3. While low sensitivity is
found for the change in the parameter value b. Thus, proper attention should
be given for the estimation of the values of the parameters a, Cy and Cj.

5. Summary and concluding remarks

In this paper, an order level inventory model for perishable product is dis-
cussed under the assumption that the linear trend is a stochastic random vari-
able. Conditional on the trend taking a particular value the total cost of meeting
demand over a given time period is determined. The mean total cost is then
derived by taking the expectation over the stochastic random variable. The
model is then solved analytically for infinite time horizon. Using the concept of
goal programming an algorithm is presented to find the solution for finite time
horizon. A numerical example is presented. Which indicates that randomness of
fluctuating parameters may have a significant effect on system running costs as
well as on order level. Therefore, the variability in time dependent demand pat-
tern, in which the increment with respect to time is uniform, must be accounted
for smooth and efficient running of business. However, the model is developed
by considering a parameter whose fluctuation is random and, thus, proper de-
termination of fluctuation parameters and their effect on the smooth demand is
essential for the successful evaluation of order level and system running costs.
When it is difficult to identify the fluctuating parameter one may treat the prob-
lem by keeping a fluctuating stock level at the beginning of each order cycle from
which inventories will be supplied to fulfill the fluctuated amount if the demand
fluctuation results in a higher demand. And the order cycle ends with keeping
the same fluctuating stock as the beginning. The elegance of this strategy is that
if the demand fluctuation leads to the depletion of lower inventory volume than
the normal demand then the surplussed inventories will be depleted through the
increment of system running time. But the main limitation of fluctuating stock



624

S. Panda and M. Basu

level is that it requires proper guessing about its amount. If the amount is higher
than the fluctuating amount the system running cost increases due to the incre-
ment of holding cost and the lower volume of it may lead to the introduction of
shortage cost and hence increment of system running cost in both the cases.

Table-4: Sensitivity analysis of expected total cost and lot-size with respect to the

change in parameter values

Parameter % change n % changein I* ETCU % change in ETC
a -40 4 -39.47 - 1794.732 -20.668
-20 6 -19.752 1994.827 -11.824
20 6 19.886 2441 .47 7.919
40 7 39.583 2665.319 17.814
b -40 6 -.193 2261.415 -.04
-20 6 -.073 2261.992 -.0174
20 6 074 2262.739 019
40 6 134 2263.074 015
6 -40 5 -.367 2167.75 -4.18
-20 5 -.047 2230.962 -1.386
20 6 247 2289.184 1.188
40 6 479 2319.827 2.54
Ch -40 7 -.209 1728.971 - -23.577
=20 6 -.025 2001.27 -11.539
- 20 5 219 2444.595 8.057
40 5 238 2666.178 17.852
Cy -40 5 266 1863.622 -17.622
- -20 5 219 2041.542 -9.795
20 6 -.045 12402.075 - 6.178
40 6 -.006 2601.788 15.005
- Cs -40 5 247 2174.311 -3.89
| -20 5 243 - 2234.608  -1.225
20 6 -.015 2287.962 1.134
40 6 -.023 2317.128 2.423
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