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MATRIX REPRESENTATION FOR MULTI-DEGREE
REDUCTION OF BEZIER CURVES USING CHEBYSHEV
POLYNOMIALS

HASIK SUNWGOO

ABSTRACT. In this paper, we find the matrix representation of multi-degree
reduction by L of Bézier curves with constraints of endpoints continuity.
Using the basis transformation between Chebyshev polynomials and Bern-

stein polynomials we can derive the matrix representation of multi-degree
reduction of Bézier with respect to Lo norm.
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1. Introduction

Given control points {p;}? ,, a degree n Bézier curve is defined by
p(t) => piBI(t), t€(0,1) N )
i=0

where B*(t) = (7)t*(1 — ¢)"* is the Bernstein polynomial of degree n. The
problem of degree reduction is to find control points {qi}z_0 which define the
approximate Bézier curve

o)=Y a:Bl(), tel01] )
1=0

of degree m (m < n) such that a suitable distance function d(p, q) is minimized.
Degree reduction of parametric curves was first proposed as the inverse problem
of degree elevation (Forrest [4], Farin [3]). Let

P= (pO)pla"' 1p‘n.)t' a'ndq: (QO9ql1"' '.lqm)t (3)
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denote the vectors of the control points of the Bézier curves p(t) and ¢(t), re-
spectively. The matrix representation of degree redunction of Bézier curves has
been studied by many authors. When m = n — 1, Sunwoo and Lee [8] propose
a unified matrix representation for degree reduction of Bézier curves. They find
that the degree reduction matrices for well known methods can be represented
in a unified form, namely, | |

qA,\p_"""" _

for a suitable matrix A, which is a generalized inverse of the degree elevation
matrix. For multi-degree reduction (m < n — 1), Lee and Park [5] find the
degree reduction matrix with respect to Lo norm without endpoints continuity.
They show that q = (T*QT) ' TtQp for some matrix @ and the degree elevation
matrix 7. Also Ahn et al. [1] prove the constrained polynomial degree reduction
in the Ly norm is equivalent to best weighted Euclidean approximation of Bézier
coefficients. They derive the control points q of the form q = (T*WT)~'T*Wp.
Although Lee and Park [5] and Ahn et al. [1] propose the matrix representation
of the multi-degree reduction, their methods require the computation of matrix
inverses. | -

Sunwoo [7] find the matrix representation of the optimal multi-degree reduc-
tion of Bézier curves with high order endpoints continuity by Ly norm, which is
derived by Chen and Wang [2]. In this paper we are interested in multi-degree
reduction of Bézier curves with high order endpoints continuity by L., norm
doo(p, q) defined by

doo(p,0) = max, [p(®) — a(t)|. @

We derive the basis transformation between Chebyshev polynomials and Bern-
stein polynomials and then using thls result, we find a multi-degree reduction

matrix meL

satisfying

= QU2 p. - (6)

where men is determined only by m,n and the orders (r, s) of endpoints con-
tinuity. | |
The organization of this paper is as follows: We introduce some basic results
in section 2. Some results about Chebyshev polynomials as well as the basis
transformation between Chebyshev and Bernstein polynomla,ls are stated in sec-
tion 3. The derivation of the degree reductlon matrix men is presented in
section 4. | o

2. Preliminaries

The optimal multi-degree reduction with constraints of endpomts continuity
with respect to L., norm is defined as follows. | |
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Definition 1. Given a degree n Bézier curve p(t), the optimal multi-degree
reduction with constraints of endpoints continuity of orders r,s (r,s > 0) is to

find a degree m (m < n — 1) Bézier curve ¢(¢) such that L, norm is minimized
and

dig0) _ d'p(0) . _ ., . #a1) _ #p(1)
dt’ dtt ’ Y dti

The first idea of multi-degree reduction with constraints of endpoints continu-
ity is due to the method given in the results of Chen and Wang {2]. The matrix
representation of multi-degree reduction by Lo norm is derived in Sunwoo [7].
The following theorem presents a key idea to obtain the multi-degree reduced
Bézier curve with constraints of endpoints continuity.

. j=0,1,...,s.

Theorem 1. (Chen and Wang (2]) Given a degree n Bézier curve p(t) =

ZPiB,?(t), t € [0,1, and let r+s <m <n-—-1and r,s <n—m. Then
1=0 ‘ '
the curve can be e:zpressed as

n—s—1 m
t)*Zqum(t )+ > piBrI®)+ D @Bl (7)
R i=r+1. i=m—s

where g;’s and p! s are deﬁned as follo'ws.

1 (m, n)
QOzﬁn—)Po, q; = b{m’") (PJ Zb v 1=12,...,7,
0,0 _ 1.:20

< qm — (.m!n) p‘na
m,n

. ®
1 | (m,n) :

Am=-j = (m,n) pn’j—zbm —in—jdm—i , J=4L2,...,8, .
L bm—'j,n—j o

3=

()(-0)
pim = AT L]

and

1,7} - (n) (9)
Whenm—-s>n+r—m
4 r
p§=pj— Z | bg?’n)qi,j:r+1,r+2,...,n+r-m,
i=max(0,j—(n—m)) '
\ p§=pj, j=n+r-m+ln+r-m+2,..., m—s—1,
= | (10)
P,{:pj" Z bE,T'?)qu iy J=m ——_s,...,n—s-—l.

\ i=max(0,m—j)
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Whenm—-s<n+4+r—m

4 r : ‘
p} =p; - Z b(m”)qz,J——r+1r+2 m—s§—1,
i=max(0,7—(n—m))
T 8
Pl =p; - DD ol A N i A
\ i=max(0,j—(n—m)) i=max(0,m-j)
j=m-sm-—s+1,...,n4+7r—m, (11)
| p§=pj'_ Z binm??f, dm—1i, |
i=max(0,m—j3)
\ j=n+r—m+1... n—s—1.

Also, {qi}i_o and {q:}™ .., are the part of the control pomts of the deg'ree
reduced curve q(t) of degree m satisfying | .

d*q(0) _ d*p(0)
dt dt

d*q(1) _ d*p(1)
di# dtr

, A=0,1,...,7; , u=0,1,.

(12)

As seen in equation (12), 7 and s are the orders of endpoints continuity at
t =0 and ¢ = 1, respectively.

3. Chebyshev polynomials

Chebyshev polynomial T, (z) = cos(n arccos( )) can be represented in Bern-
stein forms as

Ta(2t—1) = Y (-1)"H 2L BR(), (1)

=

where ¢t € [0,1]. These Chebyshev polynomla.ls are orthogonal on [0, 1] with
respect to the weight function

1 :
) = s (14)
and it is well known that |
/(Tk 2t — 1)) w(t)dt {";’ i (15)
5 k#0.
Let
Tn = (Tp(2t - 1), Tl(Zt ~1), (2t ~ 1))t and

B, = (B}(t). B (t), -, Ba(t) 19
be vectors of Chebyshev polynomials and Bernstein polynomials, respectively.

In the following lemma we can find a transformatlon matrlx between Cheby-
shev and Bernstein polynomials.
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Lemma 1. (Chen and Wang [2|) T, = A,B,
where A, = (Ak,j)(n+1)x(n+1) and

min(j,k)

o e L G)GT) .

— . n
i=max(0,j+k—n) ( )
J

In order to complete the multi-degree reduction of a Bézier curve it is required
the inverse matrix of A,,.

Now we derive the inverse transformation between Jacobi and Bernstein poly-
nomials. Chen and Wang [2] suggest the inverse transformation can be found
using the basis conversion process given in Li and Zhang [6]. But we find an
explicit form of the inverse transformation matrix A;! in the following theorem.

Theorem 2. B,, = A!T,

| (23') (Zk + 22') (zn + 25 — 2k — 2i
_ 5§ [n) < - \2i/\ k41 n+j—k—i |
ATl= — —1)7t _ .
A (’“) ;() (""“) (18)
k +
s_ L #4i=0
)2, ifj#0.

Proof. We write the transformation of the Chebyshev polynomials on [0, 1] into
the degree n Bernstein polynomials as

where

BR(t) =) ApiTi(2t—1)fork=0,1,...,n. (19)
i=0 | o
—1 . . T] (Zt — 1) ..
In order to find A, ;» we multiply the above equation by 0 , integrate
over t € [0, 1], and invoke the orthogonality of Chebyshev polynomials to obtain
Azt d / 1 B"(t)T-(Qt 1)' Lt (20)
ka] T 0 k J t(]. — t) !

s_ )1 ifj=0
]2, ifj#0.
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Using equation (13), the integral part of (20) becomes

./01 BP($)T;(2¢ — 1) t(ll —a
W) p
._Z%( 1)? (] fOBJ(t BR(t) t(l——t)dt

) _
_y 3+z(2j)( ) (k+i+1/2,n+j—k—1i+1/2)
i-—-O
_ .:ZO( )i+ @i) (k) L(k+1i+ 1/[2‘)(1;(2 ;ri I)k —i+1/2)

where B(-) and I'(-) are Beta function and Gamma function, respectively. Since
for an integer m |

Dim 4 1/9) = Y72 (21)

4mm/!

we have the result,
4. Matrix representation of MDR by L

Chen and Wang [2] derive the nearly best uniform multi-degree reduction
of Bézier curves with constraints of end point continuity with respect to L
norm, namely, MDR by L.,. The procedure of MDR by L., is summarized in
Algorithm 1.

Algorithm 1 MDR by L.

Step 1: Compute {q.;}._,,.._o and {q;}",._, as shown in (8).

t
Step 2: Compute p! = (p,.+1,p,.+2,... ,p{l_s_l) as shown in (10) and
(11). |
| t
Step 8: Compute pif = (p{,’,p{’,--_- ,pfv[) where N = n— (r+s+2) and

(rs12i)
m_ ALY i-01,... N (22)

b, = (N) pr+l+i1
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¢
Step 4: Compute pi/! = (p{,”,p{”,'-- ,pfv”) as

o nt
Py = (AY) PN (23)
‘where A}Ql. is derived in Theorem 2. Let pit = (pi!?,pi!f, ...  piif)

- where M =m —(r+s+2).
. ' t
Step 5: Compute 'pf‘}/ = (p{,v,p{v, e ,pﬁ/ ) as

Py = (Am) ph. - (24)

where A s is given in Lemma 1.

Step 6: Compute {g; I’;’;i“ll where

)
8

Sunwoo (7] find a multi-degree reduction matrix Qf,;;?n according to MDR

by L, such that q = Q(,,;’;Lp. Algorithm 1 is very similar to the multi-degree
reduction of Bézier curves with respect to Ly norm. The only difference is that we
have to use the basis transformation matrix between Chebyshev and Bernstein
polynomials in Step 4 and 5.

As noted in Sunwoo [7] the control vector q can be separated into two parts,
that is, q = q + q'/, where q/ = (q0y -1 9r, 0, ... 10, Gm—s, .-, gm )t and q'f =
(o0 s Qra1ses@mos—1,... ). Let QF and Q' such that :

pil i i=r+1,r+2,...,m—s—1  (25)

q' =Q'p and q'' =Q"p. (26)
Then the matrix Q' can be found in Sunwoo [7).

Lemma 2. (Sunwoo [7]) qf = pr where Q! = _(qjk)('mﬂ.)x(nﬁ) and qji 1is
defined by

aj—k, 1=0,1,...,mk=0,1,...,7,

- gik =
| j:m—s’m—S‘i'ls“'-)m; (27)
Ye=j=(n=m)» \ k=j+(n-m),...,n

= gy
@6%1.3??:3

elsewhere
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where ag = 1 and

:_Z( )a“k—IZ . (28)

The goal of Step 2 to Step 6 is to find the vector q’/m that is, the matrix
@’!. This matrix can be obtained by a product of a series of matrices. Some of
these matrices can be found in Sunwoo {7] and the explicit forms are given in
Appendix. |

Lemma 3. For matrices D, Inyxn, D; and C given in Appendiz and Ay
defined in Lemma 1 we have

Q" =D(Am) Iuxn (AF')'DC (29)
so that g/ = Q'p, where N=n—(r +s+2) and M =m — (r + s + 2).

Note that the inverse matrix A5’ is given in Theorem 2.

From the Lemma 1 and 2, we have the matrix representation of the vectors
q’ and q/f as q = Q'p and Q' = Q!p. Since q = qf + q’!, we have
q= (Q}r + Q*!)p. Hence we have the following result.

Theorem 3. Let QI and Q' be malrices given in Lemma 2 and 3, respectively.
Given control points p of degree n Bézier curve p(t), when q = ng?np, where

QU =@'+QY, (30
the Bézier curve q(t) = Z B*(t) of degree m is the nearly best uniform Log

3=
approximation with constraints of endpoints continuity.

5. Conclusions

In this paper we have derived the matrix representation of multi-degree reduc-
tion of Bézier curves with endpoints continuity with respect to L, norm using
the Chebyshev polynomials. Doing this we have completed the matrix represen-
tation of multi-degree reduction of Bézier curves with endpoints continuity with
respect to Ly norm as well as L., norm.

Appendix

In Lemma 3 we introduced some matrices such as D, Inmxn, D, and C. Each
matrix plays a role to represent each step described in Algorithm 1 in a matrix
form. We give the explicit form of each matrix in the followmg lemmas. The
proofs can be found in Sunwoo [7].

The matrix C stands for STEP2.
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I

Lemma 4. p° = Cp where C = (¢j_(r41).k) (N+1)x(mt1) JOr J =7+ L7+

2,...,n—8—-1,k=0,1,... ,n, is given by

3 ("o

i=max(k,j~(n-m)) J—t

n

“. IJ|x

j=r+1,r+2,..., n+r—-m;k=0,1,...,r,

Ok, Lk=r+1,r+2,...,n—s8~-1,
Ci—(r+1),k = ¢ | |
n | (31)

k > n-—m
- ; SR DI (Rt LHOS

i=max{(n—k,m-—j)

J
j=m—-sm-s+1,...,n—s—Lk=n-s,...,n,
. 0, elsewhere.
1, if7=k
where 0 = ij
0, fj#k
The matrix D stands for STEPS3.
Lemma 5. pf\{ = Dp! where D = diag(dy,d1, ... ,dn) is a diagonal matriz
n ) |
with dy = N3 FY o 0.1 N

/10 0 0 0\
01 .- 00 --- 0
Imsen =1 .. . . . i (32)
\ 0 0 - 1.0 ... 0)

The matrix D stands for STEPS.

Lemma 6. q’! = DplY where D = (dij)(my1)x(m+1) i defined by

| (z —]XI— 1)

3 , fori=r+1r+2,... m—s-1;75=1—-r—-1,
1 0)

m
i (33)
L 0, elsewhere.
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Note that the first 7 4+ 1 and the last s + 1 elements of q'' are zero. Hence
the first 7 + 1 rows and the last s+ 1 rows of D are zero and the middle part of
D is a diagonal matrix.
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