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GENERALIZATION OF KEY DISTRIBUTION PATTERNS FOR
EVERY n-PAIR OF USERS

SEON HO SHIN* AND JULIA C. BATE

ABSTRACT. In this paper, we discuss about a generalization of the Key
Distribution Pattern which was proposed by C. Mitchell and F. Piper[6].
It is allowing secure communication between every n-pair of users(n > 2)
in a large network for reducing storage requirements. We further suggest
a generalization of K. Quinn’s bounds in [9] for the number of subkeys in
such general Key Distribution Patterns.
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1. Introduction

Key distribution scheme is one of the important problems in communication
and network security. In 1988, C. Mitchell and F. Piper proposed the use of
a certain special kind of finite incidence structure that is called a Key Distrib-
ution Pattern(simply KDP), in order to give an efficient solution to main key
storage problem in key distribution scheme[6]. It provides a secure method of
distributing keys between every pair of users in a large network reducing storage
requirements. -

The purpose of this paper is to generalize a concept of such KDP for every
n-pair of users(n > 2). We call this general KDP a G,,-KDP. In fact a G,-KDP
is more useful than the original KDP because it is applicable to every n-pair of
users(n > 2). In this case the key to be used by a n-pair of users to allow them
to communicate secure is made up from those subkeys which the n-pair of users
have in common. | |

First, we introduce some generalized equivalence properties of G,-KDP for
every n-pair of users and useful examples of these schemes. Using the property
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that a finite incidence structure X = (P,B,I) is a G,-KDP iff the internal
structure of X at P € P is a G,_1-KDP, we show that (n + 1)-(v, &, A) design
is a Gp-KDP. Also we show that an G,;1-KDP is again a G»-KDP, that is,
Grn+1-KDP C G,-KDP C G,,—1-KDP C --- (n > 2). In order to make up the
maximal such n, we suggest a construction and have an example for it.

To consider such problem of collusion in G,,-KDP, we also provide some equiv-
alence properties of G,,-KDP which is secure against collusion by up to some
number w of users. Such a special G,-KDP is called a G} -KDP in this paper.
For reference, it was called a (n,w)- colluszon reszstant KDP by C. Mitchell and
F. Piper|6)].

Next, we generalize K. Quinn’s “two lower bounds in [9] for the number of
subkeys at each user in G5 -KDP. Two lower bounds we have are |

'w{logz('v —1)---(v—n+1)—logy(n — 1)! — log, w} a.nd
min{v — 1, (w+n-—1)(w+n)} |
For the terminology not introduced in this paper, we refer ta [5] for the design
theory.

2. Key distribution patterns for every n-pair of users

Key Distribution Patterns are public patterns of subsets produced using finite
incidence structures. A finite incidence structure is a triple K = (P, B,T), where
P is a nonempty finite set of points, B is a nonempty finite set of blocks and
7 C P x B is a binary relation between P and B. If (P,z) € I, where P € P and
x € B, then we say that P is incident with x or = is incident with P. We denote
the set of points incident with a block z by (z) and the set of blocks incident
with a point P by (P).

First of all we introduce some genera.hzed equlvalence propertles for every
pair of users as well as for every n-pair(n > 3) of users .

Lemma 1. Let K = (P,B,T) be a finite incidence stmcture with P > 3. Fo'r
n > 2, the fotlow’mg properties are equwalent
(1) For any n points P, P,,--- ,P, € P,

T
| n (P:) C (Pn) if and only if P; = Py, for some 1.
(2) The set-{ ﬂ(p ):P(1<i< n) are all distinct points of ’P} is a Sperner

i=1
system of subsets of B, that is, for every ﬂt_ (Pt) and MN;— 1(Q,) in the abo've_'

set such that ,_(P;) C ﬂ, 1{Q5), Ny (B) = ﬂ, 1(Qj)-

(3) Every line through distinct n points in IC has size n, where a line through
distinct n points Py, P,--- , P, 1is the set of all points which are incident with
n . - | S -

every block in ﬂ(P,,)

=1



Generalization of Key Distribution Patterns for every n-pair of users 565

(4) For any n+ 1 distinct points Py, Py, -+, P, and Q of P,

n

ﬂ(Pi)\(Q)

=1

> 1.

(5) The set{a:j . {P,, Py, - P} Cx; and {Q)Y Nz = @} is nonempty for
all distinct points Py, Pa, - , P, and Q.

Proof. Suppose that [;—,(P;) C ﬂ;-":l(Qj) for any P; and Q; in P(1 <14,j < n).
Then (_;(F;) C (Q;) for all j. By the assumption (1), P, = Q; for some 4 and
for all j. Hence N,_(P;) = N;=1(Q;), that is, the set

{ﬂ (P;): P;(1 <i<n) are all distinct elements of ’P}

1=1

is a Sperner system of subsets of B. Thus (1) implies (2).

Next, to show (2) implies (3), suppose that there exists a line through distinct
n points in P which has no size n. Then there exist at least distinct n + 1 points
P, P,---,P, and Q in K such that ()_,(P;) C (Q). Hence N (P) C

n n—1 _
(@) NN (B) By (2), ()(P) = (Q)n () (P:). Therefore P; = Q for some i,
1=1 1=1

which is a contradiction.

To show (3) implies (4), suppose on the contrary that there exist n+1 distinct
points P, %,--- , P, and @ in P such that

INENQ)| < Lie, NP € @)

Assume that (., (P;) # 0. By (3), every line through distinct n points in K
has size n, but the number of the set of all points which are incident with every
block in ()., (P;) is greater than or equal n + 1. It is a contradiction.

Since {Py, Py, -+ ,P,} C z; and {Q} Nz; = @ mean that the block z; is
incident with n points P, P, ---, P, and is not incident with the point @, the
result of (5) from (4) follows immediately. | |

For the last implication, it is enough to consider the necessary condition.
Suppose on the contrary that there are all distinct n + 1 points Py, P, -+ , P,
and @ in P such that (._,(P;) C (Q). Since there exists a block z; such that
18 incident with n points P, P,,--- , P, and is not incident with the point @,
we have an immediate contradiction and desired result follows. The proof is
complete. L

We often identify each point of K as a user in the network and each block of
K as a subkey between users. The key to be used by a n-pair of users to allow
them to communicate securely is made up from those subkeys which the n-pair
of users have in common.
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Definition 1. A finite incidence structure K is called a G, -Key Distribution
Pattern(simply G,-KDP)(n > 2) if it is satlsﬁed with one of the equivalent
properties in Lemma 1.

We note that a G3-KDP is precisely the same object as the original KDP by C.
Mitchell and F. Piper. Also it is clear from the definition that Py, P, -+ , Ph1
and P, share at least one subkey not in the subkey set of distinct user Q from
P, P, ---, P,, that is, for any G,-KDP, the key of any n-pair of users cannot
be determined from the subkeys of any other users.

All of these similarities to KDPs ensure that G,-KDPs inherit many interest-
" ing characteristics and retain the design theory notation of the original KDPs.
We note that a G,,-KDP can be represented by a v x b incidence matrix A = (a;;),
where v = [P} and b = |B|, which is defined as follows: a;; = 1 if the user P, is
incident with the block z;, and a;; = 0 otherwise.

Example 1. (1) A n-(v,n,1) design is always a G,-KDP. This is what we call
the trivial G,,-KDP. Moreover, it is a nontrivial G,— 1-KDP(W€ have more detail
for proof in Theorem 2).

(2) Some of 2-(v, k, \) design and 3-(v,k,\) design are Ga- KDPs(see 6,7]),
for example, 2-(5,4 3) design and 3-(6, 5, 3) design are G2-KDPs.

(3) Consider the following incidence matrix

(1 1111100Y)\
1 1 01 1 11
A=(a-_.;j)= 10110111'
1 1 011 0 11
\1 110001 0)
If we label the rows as users Py, P, - - - , P; and the columns as subkeys z1, 22, - -,

Tg, then A represents a non-trivial G3-KDP.
(4) 3-(5,4,2) design is a G3-KDP.

Before considering any further examples we need some basic definitions in [5].

If X = (P,B,7) is a finite incidence structure and P € P, then the internal
structure Kp of K at P is defined by the structure having point set P\{P} and
block set {x € B : z contains P}. Also the external structure K¥ of K at P is
defined by the structure having point set P\{P} and block set {x € B : z does
not contain P}.

Lemma 2. Let K = (P,B,I) be a finite incidence structure. Then K is a
Gn-KDP if and only if the internal structure Kp of K is a Gn—1-KDP.

Proof. For any user P € P and any distinct n users P, P, -+ ,P,_; and Q in
K:Pa - L .
(PN (P \Q)] 21
1=1 |




Generalization of Key Distribution Patterns for every n-pair of users 567

since K is a G,-KDP. That is, there is a subkey incident with all P;(1 < i <
n — 1) and P but not incident with (). Since ﬂ?:_ll(Pi) N{P) C ﬂ?;ll(Pi),
N (PON(Q) | 1. Hence Kp is a Gp_1-KDP. |

Conversely for any P],PQ, RN S l,P and @ in K, ‘ ﬂ )\ > 1, that

is, there is a subkey which is incident with all P;(1 <17 < n —1) but not 1nC1dent
with @ in p. Since all blocks in XCp are incident with P,

n—1

Hence K is a G,,-KDP. L
Theorem 1. Forn > 2, any (n+ 1)-(v,k, A) design is a Gn-KDP.

Proof. We use the mathematical induction on n. Clearly it is true for n = 2 as
3-(v,k, A) design is always an original KDP in [7]. Suppose t-(v,k, A) design is
a G¢—1-KDP. Let K = (P,B,Z) be a (t + 1)-(v, k,A) design. Then the internal
structure Kp(P € P) of K is a t-design(see [5]). By assumption Kp is again
a G¢_1-KDP. Therefore K is a G;-KDP by Lemma 4. Thus a (n + 1)-(v,k, A)
design is a G,-KDP for all n > 2. L

Theorem 2. A Gn+1-KDP (n > 2)_ is always a G,-KDP.

Proof. Suppose that K = (P,B,I) is a Gp1-KDP with n > 2. Then for
any distinct n users Py, P;,--- ,P, € P we can choose v — n further users
Q1,Q2, Quv—n € P distinct from P, P,---,P,. Every set of n+1 users
in a G,411-KDP is uniquely incident with at least one common subkey, i.e.,
| M (PN (Q;) 1= 1 for all j and N, (P) N (Q;) € Niq (i) N (Qk) for all
1 < j,k < v—n with j # k. Hence (_,(F;) Z (Q;) for all j. Therefore
K= (P,B,7I) is also an G,-KDP. O

According to the above theorem, we note that G,4+1-KDP C G,-KDP C
Gn-1-KDP C --- (n > 2). The following construction demonstrates how we
have a maximal m such that X is a G,,,-KDP but not a G,,+1-KDP.

Constructing the maximal m from a G,-KDP K

Firstly represent the G,,-KDP K as a v X b incidence matrix A = (a;;) as
previously shown.

Step 1. For column 3,
iof row 1 is 1, i.e., a;; = 1, then add P to set x;,

else skip.
 Once this is complete for j =1,2,--- ;b and 1 =1,2, - ,v we should
have b subsets x1,x2, - ,xy of users.

Step 2. Fork#1 (k,1=1,2,---b),
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if zi € 21 and oy € xk, let xx @ = xry() and
if [Ty = 2 and Ty is the new one, then save Ty,
else skip. |
Step 3. Repeat Step 2 for all subsets of users from Step 1 and Step 2.
Continue until no new subsets of users are produced.
Step 4. Classify x; according to the number of users.
Set (™) = {j - I:cjl =n} (1 <n<v).
Step 5. Forn=1,2,---,v, '-
check the cardznal numbe'r la:('"')’ = () or not.

The number m = maz{n : |z(™| = (*)} makes up the mazimal m
such that K is a G-KDP but not a Gpy1-KDP.

Example 2. Consider the G3-KDP in Examples 1 (3)

(11111100\
01 101111
A=(aj)=}1 0 1 1 0 1 1 1
11011011
\1 110001 0

Let’s now find the maximal m from the given incidence matrix A.
Step 1. We get 8 subsets of users 1 = {P,, P5, Py, Ps}, z2 = {P, P2, P4, Ps},
x3 = {P,, P, P3,Ps}, x4 = {P\, P3, P4}, x5 = {P1, P2, P4}, z¢ = {P1, P2, P3},
z7 = {Pa, P3, Py, Ps} and g = { P, P3, P4} from each subkey.
Step 2. We have 12 new subsets of users T)2) = {Py, Py, Ps}, :r;'(l)(g) =
{P1, P3, Ps}, z(1ys) = {P1, Pa}, zaaye) = {Pr, Pa}y 2y = {Ps, Pa, Ps}, 21y 8) =
{Ps, Pa}, z(2)3) = {P1, P2, Ps}, z(2)6) = {P1, P2}y Tay(7) = { P2y Py Ps}, T(a)(8) =
{P2, Py}, x(3)y(7y = { P2, P3, Ps} and z(3y(5) = { P2, P3} by intersecting the subsets
of users in Step 1.
Step 3. We also have 4 more subsets of users T(3)(12) = {P,Ps}, T(7y(12) =
{P4, Ps}, x(rya3) = {Ps, Ps} and z(7)(23) = { P2, Ps} by repeating Step 2 for all
subsets of users from Step 1 and Step 2.
Step 4. Weset 2 = {(1)(5), (1)(6), (1)(8), (2)(6), (2)(8), (3)(8), (3)(12), ()(12),
(7)(13), (7)(23)}, =3 = {4,5,6,8, (1)(2), (1)(3), (1)(7), (2)(3), (2)(7), (3)(7)} and
) = {1,2,3,7}. |
Step 5. We check [z?] = 10 = (3), |z®)] = 10 = () and |z®| = 4 £ 5= (3).
Hence we take m = maz{2,3} = 3, i.e., the given incidence matrix A represents
‘G3-KDP and also Go-KDP, but not a G4 KDP.

A known difficulty with the original KDP has been suggested by Blom|(2] is the
problem of collusion. He pointed out the shortcomings of such a system if two
or more users collude and pool their sets of subkeys then the system can easily
be broken. To consider the problem of collusion in G,,-KDP, we would require a
system which was secure against collusion by up to some number w > 1 of users.
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This genenral concept was introduced by Mitchell and Piper|6] as a further devel-
opments. They called it a (n, w)-collusion resistant KDP and defined by for any
n-subset F' = {f(1), f(2),---, f(n)} and w-subset H = {h(1),h(2), -, h(w)}
of {1,2,---,v} respectively, ", (Pj(;)) C UJ 1 (Pnrj)) if and only if FﬂH # 0.

We denote this by G¥-KDP since it is a w-collusion resistent G,,-KDP. This
property ensures that the key shared by any n-pair of users can not be compro-
mised by any colluding set of w or fewer other users since no other set of w other
users hold all the subkeys which the n-pair of users have in common.

We now provide some equivalent properties of G¥-KDP for w > 1.

Lemma 3. Let K = (P, B,I) be a finite incidence structure. Then the following
concepts are equivalent:

(1) K is a G¥-KDP. |

For any n users P,,Py,--- ,P, € P and any w users Q1,Q2, -+ ,Qw € P
distinct from P; (1 <1< n), | :

(2) | M= (Bi)\ Uj=1(@Qj) 1> 1.

(3) {zj : {P1, P2, , Pr} Czj and |J._,(Q:) Nz; = B} is nonempty.

Proof. For a G¥-KDP K, suppose | ()—; (%) \ U1 (Q:) |< 1 for some users
Py, P, , Py, and Q1,Q2, -+, Qu, that is, (), (P) \ U~;(Q:) = 0. Hence
Mi;(Pi) € Ui,(Q:). By assumption, P; = @; for some i and j. This is a
contradiction since all users are distinct.

Since (2) means that there exists a subkey in K which is incident with
Py, P, .-, P, but which is not incident with Q,,Q2, - ,Qw, then it follows
(2) is equivalent to (3).

To show (3) implies (1), suppose that there are n + w users P; and @; (1 <
i < n,1 <j < w) such that N_,(B) C U;”:l(Qj)‘, which contradicts the
assumption (3). This completes the proof. O

Example 3. (1) A trivial G,,-KDP is clearly a G¥-KDP for every w.
(2) Any (n + w)-design is a G¥-KDP (n,w > 1)(see 6]).

Now we have the following facts immediately.

(1) Any G,-KDP is a G¥-KDP for some w > 1.
(2) If K is a G¥-KDP, then K is also a G¥'-KDP for all w’ (1 < w’ < w).

3. Generalization of Qﬁinn’s bounds for the number of éubkeys

In 1999, K. Quinn{9] had made two lower bounds for the number of subkey
at each user P. These were for w-collusion resistent KDP, i.e., GY-KDP. We
denote the number of subkeys incident with a user P by rp as usua..l

The first one is that for any user P in K = (P,B,I), rp > 'w{logg(v — 1)

logow}(7,9]. ‘We have a generalization of this bound for a G¥-KDP with v users
as follows. | |
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Theorem 3. For a G -KDP K = (P, B,Z) with v users and a user P € P,

—1
TP ZW [logg (:& 3 1) - loggw} .

Morebver, the lower bound for the total number of subkeys in K is

N (z)w{logg(v ~1)---(v—n+1)—logy(n — 1) —log, w}.

Proof. For any user P € P, consider the (*~}) elements set

{(P)

‘We claim that the ((:%11)) possible unions of w elements of this set form a Sperner
System with ground set (P) Because suppose for P € P, we have

rfiadu-feefjes

-1

n—1 .
N ﬂ(Qi)lQ‘-EP\{P}’ISiSn"I}' |

i=1

- C

where there is a set {Q1, - -

n—1
(Pyn [ (Ry;)

7=1

1

d

n—1

=1

(P)N () (Ruw;)

Qk(n-1)} of users on the left which is not one of

}

the sets {Ri11, -+, Ritn—1)}» - » {Rw1, "+ y Rw(n—1)} on the right. Then for this
set of users, -
n—1 n—1 i —n-l ] w -'n.—l ]
P)N (Y (@x:) C | VR | V- U |V Rui)| = [ (Res)
i=1 j=1 =t ] k=1{i=1 ]

which contradicts the assumption that K is a G¥-KDP. Applying Sperner’s the-
orem|1,6] and the known fact gives

reets (72) 5 (6)) S {(::ii) }

Sorp —1 2 w{log2(27]) — logaw} = w{logz(v—1)- -+ (v~n+1) —logy(n—1)! -
logy w}. For the second statement, we note that the total number of n- pa,zrs in
K is (). Thus, the result follows. | O

Remark. It should be clear from the above theorem that for a G- KDP W1th
v users and any user P, rp > logz( 1) since this case is for w = 1.

The second one is the following: for any user PP, rp > mm{'u — 1, (w +
1)(w + 2)}[9]. We have a generalization of this bound for a G¥-KDP w1th v
users as follows. We begin by explaining a generalization of Lemma in [9].
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Lemma 4. Let P, P, --- , P, be any n users of Gy -KDP such that each subkey

in (., (P;) is held by at least one other user. Then for any S C P\{ P, P, -, Pr}
with 0 <| S |< w,

n

NENY @ zw+n-1-18].

1=1 QeS

Proof. We have the result by applying the equivalent definition of G}'-KDP and
the similar ways in Quinn’s proof(9]. Suppose not, that is, let S be a maximal
subset of P\{Py, Py, -+, P} with 0 < 8 < wsuch that | ();_; (P)\ Upes(Q) IS
w+n—2—|8]|. Since K is a G¥-KDP, |

n

NEN\ U @) =1

i=1 QEeS

and hence from two above inequalities, we have | § |< w +n — 3. By the second
inequality and the assumption, some user Q' € P — [S|U{P1, P, - , P,}| must
hold a subkey in ()., (P;). Therefore

NEN U @|<@+n-2-18)-1=w+n-3-|5]|.
i=1 QeSS HQ'} -

This is a contradiction that S is maximal. This compietes the proof. [

In particular, if w = L, | Mz (P)\Uges(Q) |2 n—| S |(see [9]).

Theorem 4. For any G¥-KDP K with v users and any user P with rp <
v—(n-—1),

1
rp 2 §(w+n — 1) (w+n).

Moreover, the lower bound for the total number of subkeys in K is

%(Z) (w + n- 1)_(fw + n).

Proof. For any P € P, let S be the set of all users in P — { P} such that every
subkey held by any n — 1 users and by P is also held by a third user. Let &
consist of all other users in P — { P}, those which hold a subkey held by P which
is held by no third user. Then | &' |=v -1~ | S |. We claim that | S |> w+ n.
Since P has a different subkey in common with every userin S’, rp > v—1—| S8 |.
Also we note that rp < v — (n — 1) from the assumption and hence |S| > n — 1.
Let P, Py,-- ,P,_1 € S. By the above lemma, | (7, (P)N(P) |> w+n—1.
Also P has at least one distinct subkey not held by Py, P,,--- , P,—1 in common
with every user in &’. Hence

rp2(w+n-1)+@w-1-|S|)=wt+n+v-2-|5|
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Thusv—1>w+n+v—2-|S8|. Therefore we have our claim | § |> w + n.
Let {Q1,Q2, " ,Quwin-1} C S. Then by Lemma 4, for 0 < j <w+n—2,

i Jj+n-—1 ] J

P)n () Q@u)I\J@Qw)|z2wt+n-1-13

i k=j+1 | k=1
So

rp 2 (w+n—-1)+(w+n- 2)+ +1

= s(w+n- 1)('w+n)
as stated.
For the second statement, we note again that the total number of n-pairs in

Kis (2). . O
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