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SOME PROBLEMS AND RESULTS ON CIRCUIT
GRAPHS AND TRIANGULAR GRAPHS

HwaAN-OK JUNG

ABSTRACT. We discuss the decomposition problems on circuit graphs and trian-
gular graphs, and show how they can be applied to obtain results on spanning
trees or hamiltonian cycles. We also prove that every circuit graph containing no

separating 3-cycles can be extended by adding new edges to a triangular graph
containing no separating 3-cycles.
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1. Introduction

Any notation not explamed below is taken from [4]. We consider only finite
simple graphs. Let G be a graph. For an edge e of G with incident vertices z
and y, we use zy or yz to denote e. For a vertex-set X of G, the subgraph of
G induced by X, denoted by G[X], is the graph with the vertex set X and the

edge set {xy eGlz,yeE X}. A vertex set X of G is a vertez cut if G — X is

disconnected and G — X' is connected for any subset X’ of X. If {x} is a vertex
cut, then z is a cut vertez of G. |

For any vertex z € V(G), let NG(:L') = {u € V(G) | u is adjacent to :z:}
With dg(z) = |Ng(z)| we call the degree of z in G. If H is a subgraph of G,
then an H -bridge of G is either an edge together its endvertices in E(G) \ E(H)
joining two vertices of H which is called a trivial H-bridge, or it is a connected

component of G — H together with all edges (and their endvertices) of G joining
this component to H which is called nontrivial. A cycle Z in a connected graph
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G is called a separating cycle if G — Z is disconnected. For a positive number
k, a separating k-cycle is similarly defined. We define further a graph is called
Sk-free if it contains no separating k-cycles.

Let G be a plane graph. The faces of G are the connected components (in
topological sense) of the complement of G in the plane. The boundary of the
unbounded face of G is the outer walk of the graph, or the outer cycle if it is
a cycle. A cycle is a facial cycle in a plane graph if it bounds a face of the
graph. Let C be a cycle in G. We denote by C the subgraph of G consisted of
the vertices and edges lying on C and in the interior of C. A plane graph is a
circuit graph if it is isomorphic to C, where C is a cycle in a 3-connected plane
graph. A 2-connected plane graph is triangular if every bounded facial cycle is
a 3-cycle. We can easily verify that every triangular graph is a circuit graph.
It is well known that if G is a 2-connected plane graph then every face of G is
bounded by a cycle. Also note that if G is plane graph and z,y, z,v occur on a
facial cycle in this cyclic order, then G contains no vertex dlSJOlnt paths from
to z and from y to v, respectively. |

The concept of circuit graphs which are frequently used in a proof process
using the mathematical induction was introduced by D. Barnette [1]. He gave
some results concerning the existence of spanning trees or hamlltoman paths
in a circuit graph by investigating the properties and the characteristic of such
graphs (see [1] and [2]). Circuit graphs have since been constructed for some
classes of 3-connected planar graphs or infinite graphs as well (see [3] or [6]),
in particular very recent result due to Jung |7] suggests that the characteristic
of circuit graphs can be applied to solve the cyclablhty problems for finite or
infinite planar graphs.

On the other hand, Thomassen [9] showed that every triangulation of the
orlentable surface with no noncontractable cycle of a limited length has a span-
ning tree of maximum degree at most 4, and Ellingham and Gao [5] improved
the result for 4-connected trlangulatlons In the proofs of their results we see
that the propertles of the triangular graphs play a crucial role for proving these
results. Moreover, triangular graphs are useful for searching spanning trees or
paths in certain classes of maximal planar graphs or triangulations (see {8]).

Motivated by the above statements, we study the decomposition problems
on circuit graphs and triangular graphs, and further it will be shown show how
they can be applied to obtain results on spanning trees or hamiltonian cycles. In
- addition, by drawing attention to natural characterizations of the circuit graphs
in terms of their subgraphs and investigating some properties concermng the
tnangular graphs, we prove that every circuit graph containing no separating
3-cycles can be extended by a,ddmg new edges to a triangular graph containing
no.separating 3-cycles.

This paper organized as follows. Following this section on introduction, Sec-
tion 2 gives one of our main theorems which characterizes the circuit graphs
by presenting 5 equivalent forms, and in addition some corollaries of the result
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are included. In Section 3, we treat the 1-decomposition of a circuit graph-and
2-decomposition of a triangular graph, and moreover we show how they can be
applied to obtain results on spanning trees or hamiltonian cycles. As an applica-
tion of these results, we show the existence of a spanning subgraph in a triangular
graph which contains the outer cycle of the graph and satisfies some additional
properties, which generalizes the theorem of Barnette. Finally in Section 4, we
study S3-free plane graphs (=graphs which contain no separating 3-cycles) and

prove that every S3-free circuit graph can be extended by adding new edges to
a S3-free triangular graph.

2. Characterization theorem for circuit graphs

In {7} three equivalent forms concerning circuit graphs (due to Barnette (1)
were given. In this section we present an extended theorem including two addi-

tional properties equivalent to them, and using the result we prove some corol-
larles

Theorem 2.1. Let G be a 2-connected plane grapb with outer cyc]e C. Then
following statements are equivalent.

(1) G is a circuit graph.

(2) For every vertex cut S of G with \Sl = 2, every component of G-S
contains a vertex of C.

(3) If S is a vertex cut with |S| = 2 and Gl,Gz are subgraphs of G with
G1UG2 = G and V(G’1 NG2) = S, then G; — S is connected and C ¢ G,
(1=1,2). | |

(4) GU(C x {v}) is 3-connected, for a further vertex v. N __

(5) There is a 3-connected planar graph G and a vertex = € V(G) such that
G is isomorphic to G — z.

Proof. Since the equivalence of the properties (1), (2) and (4) is already verified
in (7], we have to show that the assertions (3) and (5) are also equivalent to
them. | - | -

(2) = (3). We first show that G; — S is connected. To see this, consider the
number of the components of G — S. Since S is a vertex cut of G, G — S has
at least 2 components. On the other hand, since C' — S has at least 2 paths and
each component of G — S contains a vertex of C, it follows that G — S has at
most 2 components. Therefore G — S has exactly 2 components, namely Gy — S
and Gg — S, which means that both G; — S (¢ = 1,2) are connected. |

To show C € G, (1 = 1,2), suppose to the contrary that C C G;. (The
case C' C G can be similarly verified.) Then, since C is the outer cycle of G,
(G2 — S must lie in the interior of C, which implies that each component of Go — S

(which is simultaneously a component of G — §) cannot contain a vertex of C.
A contradiction. ‘
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(3) = (2). Suppose that a component (say QJ) of G — S does not contain a
vertex of C. Note that, since (G; — S)N (G2 — S) = 0, Q is contained either
entirely in G; — S or in G; — S. But, from the hypothesis that both G; —$ and
G, — § are connected, we conclude that either Q = G; —Sor Q@ =Gz — 5. We
may without loss of generality assume Q = G; — S. Then, since G; — S contains
no vertex of C, G2 must contain entirely C, which contradicts the assumption.

 (4) & (5). Since the assertion (4) = (5) is obviously true, we have to prove
the converse. By the 3-connectedness of G, there exists only one facial cycle of
GG — x containing al neighbors of x in G. Consider

G =G U{a:y |y € Né(:z:)}.'

Since G’ is obviously is 3-connected, G (with the outer cycle C) satisfies the
condition (4). | O

Corollary 2.2. Let G be a circuit graph with outer cycle C, and let Gy, G are
subgraphs of G with G = G, UG> and V(G,)NV(G2) = {z,y}. Then G,U{zy}
is a circuit graph with outer cycle (G, N C) U {zy}, (i = 1,2).

Proof. Set G} := G; U {zy}. It is clear that G is 2-connected. We can also
see that zy lies on the outer cycle of G/, for otherwise, G| — {z,y} must have
at least 2 components. But, since x,y € V(C), it follows that C C Gy, which
contradicts to (4) in Theorem 2.1. Therefore C1:= (CNG1)U{zy} is the outer
cycle of Gy. |

In order to show that G is a circuit graph, let v be a vertex (¢ V(G" )) and

set G’1 =G U (Cl X {v}) Then, by Theorem 2.1, we have to show that G1 is

3-connected. To see this, suppose that there would exist vertex cut T C V(é 1)
with |T'| = 2, such that G; — T is disconnected.

First it is v ¢ T, for otherwise G is not 2-connected. Further we see that
TZV , because of Nz (v) = V(C1). Therefore T' must contain a vertex of

Gq - C1 But, in this case, G is not a circuit graph, which is also impossible. []

Corollary 2.3. If Z be a cycle in a circuit graph, then 7 is a circuit graph.

Proof. Let G be a circuit graph containing Z (with outer cycle C'). Consider the
graph G := GU(C x {v}) for a further vertex v (¢ V(G)). Since G is 3-connected
by Theorem 2.1 and Z is a cycle in G we conclude that Z is a circuit. O

3. Decompositions

It is clear that every connected graph H has a following decomposition:
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There exist subgraphs Hy,... , H, and cut vertices zi,... ,Zm_1 of H with

m k—1 ,
H = UHk, and {U H{| ﬂsz{xk_l}, k=2,...,m : (*)
k=1 =1

such that Hy (k= 1,...,m) is either 2-connected or isomorphic to K>. We call
such a decomposition by a I-decomposition of H. If a connected graph H has a
form (*), we say that Hy is a block of H. An endblock is a block containing at
most one cut vertex. A block is trivial if it is isomorphic to K;. We say that a
1-decomposition of H is linear if H contains at most 2 endblocks; i.e., there is
an alternating sequence of blocks Hi, ..., H,, and cut vertices z1,... ,Zm—1 Of
H (m > 1) with |

Hy, 2y, Hyy Ty, Hm
such that Hy contains the cut vertices zx—; and zx, (k =2,...,m—1)

Theorem 3.1. Let G be a circuit graph with outer cycle C and let x € V(C)

be arbitrary. Then G —z has a linear 1-decomposition such that every nontrivial
block is a circuit graph. |

Proof. Set G’ = G — v. First consider the case that G’ is 2-connected. In this
case we clearly have to show that G’ is a circuit graph. To prove this, let us
denote the outer cycle of G’ by C', and suppose for contradiction that it is
not the case. Then, by Theorem 2.1, there exist a vertex cut S with |S| = 2
and a component (say Q) of G’ — S such that @Q contains no vertex of C'; i.e.,
@ lies entirely in the interior of C’. But, since C is the outer cycle of G and
C' C C = G, Q cannot contain a vertex of C. Using again Theorem 2.1, we
conclude that G cannot be a circuit graph, which contradicts the assumption.
Now consider the case that G’ is connected, but not 2-connected. Let

Ng(v)NV(C) = {z,y}

and suppose to the contrary that G’ doesn’t have a linear 1-decomposition. Let
Qi,...,Q, be the endblocks of G’ with the cut vertex ui,...,u,. First note
that r > 3, since G’ is not linear. If we may without loss of generality assume
that z € Q; and y € @, then each of the remaining endblocks (except for its
cut vertex) Q; — u; (i = 2,...,r — 1) must be contained in the interior of C.
Then, since S := {ug, v} separates G, it follows that @; — u; is a component of
G — S which does not contain a vertex of C. Thus, by Theorem 2.1, G is not a
circuit graph, which contradicts the assumption. The fact that each nontrivial
block of G’ is circuit graph can be verified using similar method above. O

We will now consider the triangular graphs.
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Proposition 3.2. Let G be a triangular graph. Then there exist subgraphs
Gi,...,Gm and edges e1,... ,em—-1 Of G with

k-1
U
1=1

such that G (k=1,... ,m) is either a 3-cycle or 3-connected triang'ulé,r'graph.

G e U Gk) and mGk — n{ek—'l}.) k =3 2, ..o, m (**)

k=1

Proof. The assertion can be easily verified by inductiononm. . . -~ [

We may say that for a triangular graph G the decomposition in Proposition
3.2 is a 2-decomposition. If a triangular graph has a form (**), we say that
Gk is a term of G and the edge ex an edge-cut of G, (k =1,...,m). If a term
contains at most one edge-cut, it is called a endterm of G. A term is trivial if it is
isomorphic to K3. A 2-decomposition is linear if there is an alternating sequence
of 3-connected triangular graphs Gi,... ,G,, and edge-cuts ej,...,em—1 of G
(m > 1) with’ .
| G, e1,G2, - yem—1, Gm

such that Gy (k = 2,. — 1) contains the edge—cuts €k— 1 and ek -

Lemma 3.3. Let G bea trJanguIar graph with outer cycle C containing endterms
T and T'" (T # T') with edge-cuts ry and z'y ,'respectwely Let further

ve (VD) nV(Ee)\ (o}, o € (V(T)n 'v(c))'\ (a4} arbitrary. Then
G has a linear 2-decomposition if and only if both the two v,v'-paths on C are
induced. |

- Proof. Suppose that a v,v'-path (say J) on C is not induced, in cause of two
vertices u,w € V(J) with uw € E(G) but uw ¢ E(J). Then uw is an edge-cut
of GG, and it follows that G must contain an endterm (dlstmct from T and T).
Therefore GG is not linear. The converse is obvious. " L]

We will now prove a similar argument as Theorem 3.1 using Lemma 2.3.

Theorem 3.4. Let G be a 3-connected triangular graph with outer cycle C
with |V(C)| > 4, and assume that G contain no separating 3-cycles. Further let
x € V(C) be arbitrary. Then G — x is a linear 2-decomposition such that every
nontrivial term is a 3-connected triangular graph.

Proof. From the 3-connectedness and triangularity of G, G — T is 2- connected
trlangular graph. Let
Ne(@)NV(C) = {v,v}.

Let further J1 and Jz be the v, v'-paths on the outer cycle of G —z with J1 =
C — z. Then clearly V(J3) = NG( ), since G is triangular. In order to prove
that G' has a linear 2-decomposition, we only show that J; and Jy are induced
paths, by Lemma 3.3. |
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First we see that, from the facts that J; € C and G is 3-connected, J;
is an induced path. But J; is also induced, for otherwise, as in the proof of
Lemma 3.3, there exist two vertices (say u,w) on Jo with vw € E(G)\ E(J2).
Then it can be easily seen that {x,u,w} separates G. Since zu,zw € E(G)
(from the triangularity of G) and uw € E(G), {z,u,w} is a separating 3-cycle,
which contradicts the hypothesis. The fact that every nontrivial term of the 2-

decomposition of G is a 3-connected triangular graph follows from the definition.
0 | |

Below we derive one of our main results as a consequence of Theorem 3.4,

which provides the existence of spanning trees possessing some particular prop-
erties concerning degree conditions.

Theorem 3.5. Let G be a triangular graph with outer cycle C, and Iét U,V €
V(C). Then there exists a spanning subgraph H of G with C C H such that
dy(z) <3 for all z € V(H) and dy(u) = dg(v) = 2.

Proof. We proceed by induction on the number of vertices |V(G)|, the result
being trivial when [V(G)| = 3. We distinguish two cases.

Case 1 : G contains no trivial C-bridge.

Choose an arbitrary vertex w € V(C)\ {u, v}, and set Ng(w) = {wr,... ,wr}
in the natural order. Then we first see that k > 3, for otherwise, i.e., Ng(w) =
{w1, w2}, we have wyw, € E(G) by the triangularity of G, and thus this edge is
a trivial C-bridge, a contradiction. Further, by the fact that G is 3-connected
from the assumption, we have ws, ... ,wr—; ¢ V(C), and therefore

C' = (C ~w)U{w,wy,... , W1, wi }

is the outer cycle of G — w.

Apply the theorem inductively to G — w with C’ playing the role C, to obtain
a spanning subgraph H’ in G — w with C’ € H' such that dgy.(u) = dy/(v) = 2
and dy+(z) < 3 for all z € V(H'). Then by setting - -

H .= [H' U {wwl,wwg,'w'wk}] \{Wlw%'wkwk-.—l}. |

we get a spanning subgraph of G as desired.
Case 2 : G contains a trivial C-bridge. | |
Let yz € E(G) be a trivial C-bridge in G, and set G; and G5 be the subgraphs
of G with |
GiUGa =G  and Glﬁng{yZ}.
Let us denote the Y, z-path on C contained in G; by P (¢ = 1,2). Then we can

thhout difficulty see that both G; and G5 are trlangular graph with the outer
cycles |

Cy = Py U {yz} and Ch = Py U{yz}, respectively.



538 Hwan-Ok Jung

Subcase 2.1 : w € V(P1)\ {y,z} and v € V(P)\ {v, 2} (or u € V(P)\{y,z}
and v € V(Py)\ {y,z}).

We will prove the former case. (The latter case can be analogously verified.)
Since G; (with the outer cycle C;) satisfies the hypothesis in the theorem, we
can apply this theorem inductively to each G; with C; C H; (i = 1, 2) satisfying
the conditions

dHl( ) dHl (y) dH:z( ) de(z) = 2.

Then, by putting H = (H, U Hz) — {yz}, we obtain a subgraph of G satisfying
the desired properties. e

Subcase 2.2 : u,v € V(P;). (In the case .u,'u € V(P,) it can be similarly
verified.) |

As in the proof above, we can also obtain subgraphs H; of G, and H, of Gy
with

- dHl (U) dHl (U) dh’z (y) — de (Z) = 2. |
Then H = (H; U H) — {yz} is a subgraph of G as desired. 0O

We note that the following consequence of Theorem 3.5 is a slight variation
of Barnette’s Theorem (1] on spanning trees in circuit graphs.

Co_i'ollary 3.6. Let @, C, u and v as in Theorem *** pe given. Then there
exists a spanning 3-tree in G with dr(u) = 1 and dr(v) < 2.

Proof. It H is a subgraph of G obtained from Theorem 3.5, we delete from H
one of the edges incident to each facial cycle to get a spanning 3-tree with the
required degree constraints. L]

' 4. S3-free plane graphs

Clearly every planar graph can be extended to a maximal planar graph by
adding some new edges. We now prove that every 2-connected S3-free planar
graph can be extended to a S3-free maximal planar graph, and as a corollary
we show that every S3-free circuit graph is a spanning subgraph of a S3-free
triangular graph.

Theorem 4.1. Let H be a 2-connected S3-free plane graph. Then there exists
a S3-free maximal planar graph G satisfying the properties

HCG and V(H)=V(G)

Proof. 1If every facial cycle of H is a 3-cycle, then H already is a maximal planar
graph, and therefore we are done. Otherwise, choose a facial cycle (say Z) with

V(Z):{’Ul,’vz,'...','vk},' k>4
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Case 1 : Either vyv3 € E(H) or wovy € E(H).

We will only consider the former case. In this case we see that vovy ¢ E(H).

We now add a new edge vav4 in the interior of Z. Then the constructed graph
may be denoted by H’.

Case 2 : Both vyvz ¢ E(H) and vvg ¢ E(H).

If there does not exist a vertex w € V(H) with wv;,wv3 € E(H), then we can
simply add an edge vzv4. Now let w € V(H) with wv,wvs € E(H). Then we
first verify that vovy ¢ E(H), by planarity of H. To obtain a new graph, denoted
by H', adding a new edge vovs in H without creating a separating 3-cycle, we
have only to show that there exists no vertex of H adjacent to both vy and v,.

To see this, it must be noted that each vertex of H must lie either in the
interior of 4-cycle vyvav3wv; or in the exterior of the cycle vywvgvs .- v;. If &
vertex u lies in the interior of the cycle vyvv3wvy u cannot be adjacent to vy.

On the other hand, if a vertex u lies in the exterior of the cycle viwvzvg - - - vy,
it cannot be adjacent to vs.

In any case, the constructed graph H' remains 2-connected S3-free plane
graph with V(H') = V(H) and further E(H') = F(H) + 1. By noting that
the number of edges of a maximal planar graph is 3|G| — 6, our construction

eventually terminates since the number of edges is increased by one at each
stage. | O]

As an immediate consequence of Theorem 4.1, we have:

Corollary 4.2. Every S3-free circuit graph can be extended by adding edges
to a S3-free triangular graph.
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