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CONVERGENCE OF THE GENERALIZED MULTISPLITTING
 AND TWO-STAGE MULTISPLITTING METHODS'
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ABSTRACT. In this paper, we first provide a convergence result of the gen- - -
eralized two-stage splitting method for solving a linear system whose co-
efficient matrix is an H-matrix, and then we provide convergence results

of the generalized multisplitting and two-stage multisplitting methods for
both a monotone matrix and an H-matrix.
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1. Introduction

In this paper, we consider both the generalized multisplitting method and
the generalized two-stage multisplitting method for solving a linear system of
the form | |

Az =b, =z,b€R", | | (1)
where A € R™ ™ is a nonsingular matrix. For a vector zx € R*, z > 0 (z > 0)
denotes that all components of x are nonnegative (positive). For two vectors
r,y € R", z > y (x > y) means that z —y > 0 (x —y > 0). For a vector
r € R", |z| denotes the vector whose components are the absolute values of
the corresponding components of . These definitions carry immediately over
to matrices. A matrix A is called monotone if A~! > 0. A matrix A = (aij)
is called an M -matriz if a;; <0 for ¢ # j and A is monotone. The compamson
matriz (A) = (oy;) of a matrix A = (as;) is defined by "

|a-,;j| if 2 =j

;3 = .
“ —|a,;j| lf’tf,éj
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A matrix A is called an H-matrix if (A) is an M-matrix. Let p(A) denote the
spectral radius of a square matrix A. A representation A = M — N is called
a splitting of A when M is nonsingular. A splitting A = M — N is called
reqular if M~! > 0 and N > 0, weak reqular if M~! > 0 and M™IN > 0,
and convergent if p(M~1N) < 1. A splitting A = M — N is called an H-
splitting of A if (M) — |N| is an M-matrix, and an H-compatible splitting of A
if (A) = (M) — |N|. A = M — N; — N> is a composite splitting of A if M is
nonsmgular and A = M — N; — N is a convergent regular composite splitting
of A if both A = M; — N; and M; = M — N, are convergent regular splittings.
Let A = M — N; — N3 be a composite splitting of A and M = F — G be a
splitting of M. Then, the generalized two-stage splitting method for solving the
linear system (1) is as follows. k

Algorithm 1: Generalized two-stage sphttmg method
Given an initial vector zg
For i =1,2,..., until convergence
Yo = Ti—1
Forgj=1top
ij = Gyj_.l + (lei--l + NQCC;' + b) |
. = Yp

If No =0, then Algorithm 1 reduces to the two-stage spllttmg method.
A collection of quadruples (Mg, NF, N¥, Ex), k= 1,2,...,¢, is called a gener-

alized multisplitting of A if A = My — N{ — N§ is a composite splitting of A for
¢

k= 1,'2, , ¢, and E}’s are nonnegative diagonal ma,trlces such that Z Ey = I

| k=1
The generalized multisplitting method associated with this generalized multisplit-

ting for solving the linear system Az = b is as follows.

- Algorithm 2: Generalized multlsphttlng method
Given an initial vector g -
Fori=1,2,..., until convergence
Fork=1to/
Mkyk = Nl T;—1 + N2 T; + b

Z Ewyr

If Ny =0 for k = 1,2, ..., ¢, then Algorithm 2 reduces to the multisplitting
method which was first introduced by O’Leary and White [5] and was further
studied by many authors [1, 4, 7].

When the linear systems in Algorithm 2 are also solved iteratively in each
processor using the splittings M = Fx—Gy, one obtains the following generalized
two-stage multisplitting method. |

* Algorithm 3: Generalized two-stage multisplitting method
Given an initial vector zg
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For1=1,2,..., until convergence
For k=1to ¢
Yk,0 = Ti-1
Forj=1top

Feyk,; = Gryr,j-1 + Nfiri-l + Né“:l:i + b
B
T = ZEkyk,p
k=1

This paper is organized as follows. In Section 2, we present some preliminary
results which we refer to later. In Section 3, we present a convergence result
of the generalized two-stage splitting method for solving a linear system whose
coeflicient matrix is an H-matrix. In Section 4, we present convergence results

of the generalized multisplitting and two-stage multisplitting methods for both
a monotone matrix and an H-matrix.

2. Preliminaries

Varga [6] showed that for any square matrices A and B, |A| < B implies
p(A) < p(B). Frommer and Mayer [1] showed that |4~} < (A)~! when A is
an H-matrix, and Frommer and Szyld [2| showed that if A = M — N is an
H-splitting, then A and M are H-matrices and p(M~!N) < p((M)7!|N|) < 1.

Lemma 2.1 ([3]). Given a nonsingular matriz A and a matric H such that
I — H is nonsingular, there erists a unique pair of matrices B and C such that
A=B~C and H=B~'C. Moreover, B=A(I -H)™! andC=B - A.

In the context of Lemma 2.1, we say that H induces the unique splitting
A=B-C.

Theorem 2.2 ([6]). If p(A) < 1, then I — A is nonsingular and (I — A)~! =
o ' _ ' :
Y Al
j=1

3. Convergence of the generalized two-stage splitting method

In this section, we consider convergence of the generalized two-stage splitting
method (Algorithm 1) for solving the linear system (1). Algorithm 1 using an
outer splitting A = M — N; — N; and an inner splitting M = F — G can be
written as |

z; =(B—Ny) "N (C+N)zia +(B-Ny) b, i=1,2,..., (2)

where B = M(I — (F7'G)?)"! and C = M(I — (F~1G)?)"1(F~!G)?. Here
T = (B — N3)~"Y(C + N) is called an iteration matrix for Algorithm 1 with p
inner iterations. In equation (2), it is assumed that both I —(F~'G)? and B— N,
are nonsingular. From Lemma 2.1, it is easy to see that (F~'G)P induces the
unique splitting M = B—-C and A = (B—N3)—~(C+ N;). For detail description
of (2), see Lanzkron et al [3].
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Theorem 3.1 ([3]). Let A= M — N; — Ny be a convergent reqular composite
splitting of A. If M = F —G is a weak regular splitting of M, then the generalized
two-stage splitting method converges for any initial vector xo. Moreover, A =
(B — Ng) — (C + Nyp) is a weak regular splitting of A.

The assumption in Theorem 3.1 implies that the coefficient matrix A is
monotone. The following theorem presents a convergence result for the gen-
eralized two-stage splitting method when A is an H-matrix which need not be
monotone.

Theorem 3.2. Let A = M — Ny — N, be a composite splitting of A. Suppose
that A = My — Ny is an H-splitting of A and M, = M — Ny is an H-compatible
splitting of My. If M = F — G is an H-compatible splitting of M, then the‘
generalized two-stage splitting method converges for any initial vector .

Proof. We only need to show that p(T') < 1, where T = (B—-Ng) H(C+ N1) and
B and C are defined as in (2). Since A = M; — N, is an H-splitting, A and M, are
H-matrices, and p(M; ' N1) < p({(M1)7}|N1]) < 1. Let A = (M) — [N1| — [ N2).
Since M; = M — N, is an H-compatible splitting of an H-matrix M, A=
(My) — |Ny|, M is an H-matrix, and p({M)~!|N,|) < 1. It follows that both

A= (M) —|Ny| and (Ml) = (M) — |Na|

are convergent regular Sphttmgs Hence, A = (M) — |N;| — |N2| is a convergent
regular composite splitting of A. Since M = F — G is an H-compatible splitting
of M, (M) = (F) — |G| is a regular splitting of (M). Let T denote an iteration
matrix of the generalized two-stage splitting method with p inner iterations
corresponding to splittings A= (M) —|Ny| — |N2| and (M) = (F) — |G|. Then,
it is easy to show that T = (B — [Nz})~Y(C + |N1|), where B = (M)(I — HP)™!,
C = (M)(I — HP)"'H?, and H = (F)~!|G|. From Theorem 3.1,

o(F) < 1. ©

From Lemma 2.1, it can be easily seen that H? induces the unique splitting
(MY = B—C. Let H = F~ 1G‘ Smce |H| < H and p(H) < p(H) < 1, by
Theorem 22 |

BT = 0 - Y

ar (4)

Since HP > 0 and p(H?) < 1,
B'<(I- BB = (M)t - (5)
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From (4) and (5), one obtains

p(B7'N2) < p(B7HINal) < p((B) 7N} < 1. ()
From equation (6) and Theorem 2.2, | |
T=(B-N)Y(C+Ny)
(I-B !Ny Y B 'C+B'V)

(7)

0o
=Y (B !N2)/(H? + B7'Ny).
7

From (4), (6) and (7),

f

Z(B*NQ)J(HMB LNy)

7]
: §=0

<D _(BTUNJY (P + B™!|Ny)

N
1}
o

3

pnqs

(B N2|)? B~HC + [M1])

I
=

j

= (I = B7YN|) 7' B7HC + [M1])
=(B-|Ne|)"HC+ M) =T.

From (3) and (8), p(T') < 1 which completes the proof. O

Corollary 3.3. Let A = M — N1 — N, be a composite splitting of an H-matriz A.
Suppose that A = My — Ny is an H-compatible splitting of A and My = M — Ny
18 an H-compatible splitting of M. If M = F — G is an H-compatible splitting
of M, then the generalized two-stage splitting method converges for any initial
vector Xog. |

Proof. Since A is an H-matrix and A = M; — N; is an H-compatible splitting
of A, A = M; — N, is an H-splitting of A. Hence, the proof is complete from
Theorem 3.2. | | W

Now we provide a typical example of the generalized two-stage splitting
method for solving the linear system (1). |

Example 3.4. Suppose that a matrix A is partitioned into ¢ x g blocks, i.e.,
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Let A= D —~ U — L be a composite splitting of A, where D is a block diagonal
matrix, U is a strictly block upper triangular matrix and L is a strictly block
lower triangular matrix, i.e.,

D1 0 0 0 0 - Q 0 Uy - U]Q\

0 Dy -~ O Ly 0 - 0 0 0 - U
p={. . . .l|l.t=1. . . | us=

0 0 - Do L ng 0 o 0 --- 0/

Let D = F — G be a splitting of D such that each diagonal block D; has a
splitting D; = F; — Gy, i.e.,

F o .- 0 G 0 0

0 Fo .. 0 0 Go - 0
F=1. . ], G=

0 0 e Fq 0 0 [ Gq

Then, the generalized two-stage splitting method corresponding to this splitting
for solving Ax = b is as follows.

Given an initial vector zg

For:=1,2,..., until convergence
Yo = Ti—1
Fork=1togq
Forj=1top
E y(k) = ka Y+ (Uzicy + Lz, + b) (k)
(k) _ y}()k)

In this a.lgorlthm, the superscript (k) of a vector stands for the kth block of the
vector. Notice that x; at each iteration i is computed one block at a time. Since
Lisa Str'ictly block lower trian‘gular matrix, (in)(k) can be computed "ex'plicitly.'

4. Convergence of the generalized multisplitting and two—stage
multisplitting methods

In this section, we consider convergence of both the generalized multisplitting
method (Algorithm 2) and the generalized two-stage multisplitting method (Al-
gorithm 3) for solving the linear system (1). Algorithm 3 using outer splittings
A= My — Nf — N} and inner splittings My = F;, — G can be written as

¢ £ : :
:ZEkaxi~1+Z(Bk"N§)-l b, 1= 132)-.“, _ (9)
k=1 k=1

where Ty = (Bx — NF)~Y(Ci + NF), By = Mi(I — (F; 'Gy)P)™! and C; =
¢

Mi(I—(F7'Ge)?) Y (F7'Gi)P. Here S = Z E. Ty is called an iteration matrix

| k=1
for Algorithm 3 with p inner iterations. In equation (9), it is assumed that

I~ (Fk'"le)p and By — Né‘ are nonsingular for k =1,2,...,¢4.
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Theorem 4.1 ([5]). Let A be a monotone matriz and (My, N, Ex), k=1,2,...,¢,
be a multisplitting of A. If A = M) — Ny is a weak reqular splitting of A for
k=1,2,...,¢, then the multisplitting method converges for any initial vector zy.

Theorem 4.2. Let -(Mk,N{‘,Nf,Ek), k=1,2,...,¢ be a generalized multi-

splitting of A. If A= My — Nf — N¥ is a convergent regular composite splitting
of A and My = Fx, — G\, is a weak reqular splitting of My for k =1,2,...,¢, then
the generalized two-stage multisplitting method converges for any initial vector
Zo.

Proof. 1t is easy to see that A is monotone. Let § = Zizl ETi be an iteration
matrix of the generalized two-stage multisplitting method, where each T} is
defined as in (9). Notice that each T is an iteration matrix of the generalized
two-stage splitting method corresponding to an outer splitting A = My—~Nf— Nk

and an inner splitting M, = Fr — G¢. From Theorem 3.1, A = (B;c — Né") —

(Cr + N{‘) is a weak regular splitting of A for each 1 < k < £. Since S can be an

iteration matrix of the multisplitting method using splittings A = (B ——- Né‘) -
(Ck + NF), from Theorem 4.1 p(S) < 1 which completes the proof. O

Theorem 4.3. Let (Mk,N{‘,NZ’,‘,Ek), k=1,2,...,¢ be a generalized multi-

splitting of an H-matriz A. Suppose that A = Mf — NF is an H-compatible
splitting of A and M¥ = My — N¥ is an H-compatible splitting of M§ for every
1 <k <L If My = F—Gy is an H-compatible splitting of My fork =1,2,...,4,
then the generalized two-stage multisplitting method converges for any initial vec-
tor .

¢
Proof. Let § = ZEka be an iteration matrix of the generalized two-stage
k=1
multisplitting method, where each T is defined as in (9). Since A is an H-
matrix, the H-compatible splittings A = MF — NF and MF = My — N¥ are
also H-splittings. Hence from the process of the proof of Theorem 3.2, (A4) =
(M) —|N¥|—|N§| is a convergent regular composite splitting of (4) and (M) =
(F) — |Gkl is a regular splitting of (My). For each 1 < k < ¢, let Ty be an
iteration matrix of the generalized two-stage splitting method using an outer
splitting (A) = (My) — |[NF| — |N¥| and an inner splitting (Mx) = (Fi) —
¢

|Gx|. Then, S = ZEkf’k is an iteration matrix of the generalized two-stage
k=1 .

multisplitting method using outer splittings (A) = (M) —|N¥] —|NJ| and inner

splittings (M) = (Fx) — |Gk|- From Theorem 4.2 and the process of the proof

of Theorem 3.2, : - | |

- p(S) <1 and |T| < Tk. | | (10)

From (10), [S| < S and hence p(S) < 1 which completes the proof. -0
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Since the generalized multisplitting method can be viewed as the generalized
two-stage multisplitting method with p = 1 and the inner splittings My = M; -0,
Corollaries 4.4 and 4.5 are obtained from Theorems 4.2 and 4.3, respectively.

Corollary 4.4. Let (Mk,N{‘,Nf,Ek), k=1,2,...,¢, be a generalized multi-

splitting of A. If A= My — NF — N¥ is a convergent regular composite splitting
of A, then the generalized multisplitting method converges for any initial vector
0. | |

Corollary 4.5. Let (Mk,N{“,Né“', Ek) k=1,2,...,¢ be a generalized multi-

splz'ttz’ng of an H-matriz A. If A= MF - Nf is an H—compatzble splzttmg of A
and Mf = M — N¥ is an H-compatible splitting of M¥ for every 1 < k < ¢,
then the generalized multisplitting method converges for any initial vector To.

Now we provide an example of the generalized multisplitting method for solv-
ing the linear system (1). |

Example 4.6. For simplicity, suppose ‘that £ = 2, i.e., the number of processors
to be used is 2. Then A is partitioned into 2¢ x 20 bloch ie.,

An A —Ai —Aiq
—A1  Ax —Axz —Ax
—As1 —As;  Azz —Aszg |’
—-A41 —A42 ‘*A43 A44

where A;;’s are assumed to be nonsingular matrices. Let

A=

Ain 0O 0 0 0 A2 Az An
0 Aoo 0 0 0 0 Azz  Aaqy
M= N1 = ,
0 0 Asz o0 |’ A3y Az 0 Az
0 0 0 Aiq - \An  Asge 0 O
0 0 0 0
| Ay 0 0 O
Np= |72 = 7
0 0 0 0
0 0 Ays 0/

Then A=M — N; — N; is clearly a composxte Sphttmg of A. Let Mk = M _
Nf = Nl,ansz-—Ngfork-—IZ Let |

I 000 0000
oI o o) 0000
Br=1o 00 0] B0 0 1 0

0 00 0 000 I

Then (My, NF,N¥ E.), k = 1,2, is a generalized multisplitting of A. The
generalized multisplitting method associated with this generalized multisplitting
for solving Ax = b can be written as
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Given an initial vector xg
For i = 1,2, ..., until convergence
Fork=1tol =2
Myr = Nyz;1 + Nox; + b

¢
x; = Z Eryx
k—1

In this algorithm, notice that z; is required in the computation of the right-hand
side of equation. Nevertheless, since M is a block diagonal matrix and _'Ng is a

¢

special strictly block lower triangular matrix, x; = Z Eryi can be computed

k=1

completely in parallel among the ¢ processors as follows:

(
(

:L‘(-l) Al_ll 0 0 A2 Aiz Aig 0 0 :Egl) b(1)
@)= ~1 Ti-1+ @ | Tl ]|

T 0 Ay 8] 0 Aoz Aoy A 0 T b

3“53) _ (A5 0 A3z; A3zx 0 Ax i+ 0 0 :E?(ZS)

D]\ 0 Ay Aix Az 0 0 )7 T Az 0) \2®

-+

tv))

In this equation, the superscript (k) of a vector stands for the kth block of

the vector.

o
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