The Multidirectional Random Wave Diffraction in a Partial-Reflecting Harbor due to a Submarine Pit

Pit에 의한 부분반사율을 갖는 항내에서의 다방향 불규칙 파랑회절에 관한 연구

  • Kim, Sung-Duk (Dept. of Civil & Environment Engineering, Cheongju University) ;
  • Lee, Hong-Sik (Department of Civil Engineering, Chung-Ang University)
  • 김성덕 (청주대학교 토목환경공학과) ;
  • 이홍식 (중앙대학교 토목공학과)
  • Published : 2008.06.30

Abstract

The present study is to estimate the effects of diffracted wave fields in a harbor and around harborentrance due to random waves, when a navigation channel is dredged in the vicinity of the a harbor entrance. The cross sections of harbor boundary are considered to be partial or full reflection in this study. The numerical simulation has been performed by the boundary element method, which is to discrete segments of pit- and harbor- boundary with the algorism of auto generated elements. The incident wave conditions are specified using discretized forms of the Mitsuyasu's frequency spectrum and directional function. The results of the present numerical simulation agreed well with those of the published experimental data. It is shown that the ratios of wave height reduction are about 20% for the case of fully reflecting boundary, and 10% for the case of partially reflecting boundary by the effect of placing a pit, respectively.

본 연구는 항만입구(항구) 부근에 항로가 준설되었을 경우, 항내 및 항구 주위에서 회절되는 파랑장의 효과를 예측하기 위한 것이다. 본 연구에서 항만경계의 단면은 부분반사 혹은 완전반사로 고려한다. 본 수치모의 계산은 자동경계요소 알고리즘으로 Pit 및 항만경계의 경계요소(segment)를 이산화한 경계요소법에 의해 실시하였다. 입사파 조건은 Mitsuyasu의 주파수스펙트럼과 방향함수의 이산화된 형태를 사용하여 특정화하였다. 본 계산치의 결과는 기존에 발표된 실험치의 결과와 잘 일치하였다. Pit 설치의 효과에 의해 파고감소의 비율은 완전반사 경계의 경우에 대하여 약 20%, 그리고 부분반사 경계의 경우에 대하여 약 10% 정도인 것으로 나타나고 있다.

Keywords

References

  1. 김성덕, 이홍식(2007). Pit에 의한 부분반사율을 갖는 항내 에서의 파랑 회절에 관한 연구. 한국해안.해양공학회지, 19(5), 502-510
  2. 이홍식, 이보형(2001). Pit에 의한 파랑의 회절에 관한 연구. 대학토목학회논문집, 21(50-B), 531540
  3. Gaillard, P.(1984). Combined refraction-diffraction calculations with directional wave spectra. Proceedings of the 19th Intl. Conf. on Coastal Engrg., ASCE, New York, 1040-1056
  4. Goda, Y., Takayama,T., and Suzuki, Y.(1978). Diffraction diagrams for directional random waves. Proceedings of the 16th Intl. Conf. on Coastal Engrg., ASCE, New York, 628- 650
  5. Isaacson, M. and Qu, S.(1990). Waves in a harbor with partially reflecting boundaries. Coastal Engineering, 14, 193-214 https://doi.org/10.1016/0378-3839(90)90024-Q
  6. Kirby, J.T. and Dalrymple, R.A.(1983). Propagation of obliquely incident water waves over a trench. Journal of Fluid Mechanics, 133, 47-63 https://doi.org/10.1017/S0022112083001780
  7. Kreisel, H.(1949). Surface waves. Quart. Appl. Math., 7, 21-44 https://doi.org/10.1090/qam/31924
  8. Lee, H.S.(2004). Boundary element modeling of multidirectional random wave diffraction by multiple rectangular submarine pits. Engineering Analysis with Boundary Elements, 28(9), 1149-1155 https://doi.org/10.1016/j.enganabound.2004.04.002
  9. Lee, H.S. and Kim, S.D.(2006). A comparison of several wave spectra for the random wave diffraction by a semi-infinite breakwater. Ocean Engineering, 33(14-15), 1954-1971 https://doi.org/10.1016/j.oceaneng.2005.09.013
  10. Lee, H.S., Lee, B.H., and Kim, S.D.(2003). Multidirectional random wave interactions with submarine rectangular pits. KSCE Journal of Civil Engineering, 7(2), 93-105 https://doi.org/10.1007/BF02841969
  11. Lee, H.S. and Williams, A.N.(2002). Boundary element modeling of multidirectional random waves in a harbor with partially reflecting boundaries. Ocean Engineering, 29(1), 39-58 https://doi.org/10.1016/S0029-8018(01)00006-3
  12. Lee, H.S. and Williams A.N.(2004). The diffraction of multidirectional random waves by rectangular submarine pits. Journal of Offshore Mechanics and Arctic Engineering, ASME, 126(1), 9-15 https://doi.org/10.1115/1.1641387
  13. Lee, J.J. and Ayer, R.M.(1981). Wave propagation over a rectangular trench. Journal of Fluid Mechanics, 110, 335-347 https://doi.org/10.1017/S0022112081000773
  14. McDougal, W.G., Williams, A.N., and Furukawa, K.(1996). Multiple-Pit breakwaters. Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, 122(1), 27-33 https://doi.org/10.1061/(ASCE)0733-950X(1996)122:1(27)
  15. Miles, J.W. (1967). Surface-wave scattering matrix for a shelf. Journal of Fluid Mechanics, 28, 755-767 https://doi.org/10.1017/S0022112067002423
  16. Mitsuyasu, H.(1972). The one-dimensional wave spectra at limited fetch. Proceedings of the 13th Intl. Conf. Coastal Engrg, ASCE, New York, 289-306
  17. Mitsuyasu, H., Tasai, F., Suhara, T., Mizuno, S., Ohkusu, M., Honda, T., and Rikiishi, K.(1975). Observation of the directional spectrum of ocean waves using a cloverleaf buoy. Journal of Physical Oceanography, 5, 750-760 https://doi.org/10.1175/1520-0485(1975)005<0750:OOTDSO>2.0.CO;2
  18. Nagai, K.(1972). Diffraction of the irregular sea due to breakwaters. Coastal Engineering in Japan, JSCE, 15, 59-67 https://doi.org/10.1080/05785634.1972.11924146
  19. Newman, J.N.(1965). Propagation of water waves over an infinite step. Journal of Fluid Mechanics, 23, 399-415 https://doi.org/10.1017/S0022112065001453
  20. Takezawa, M., Lee, H.S., Lee, B.H., Kim, I.J., and Williams, A.N.(2000). Diffraction of water waves due to a pit breakwater. Proceedings of the 9th Intl. Conf. Hydraulic Engineering Software VIII, WIT Press, UK, 243-252
  21. Williams, A.N.(1990). Diffraction of long waves by rectangular pit. Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, 116, 459-457 https://doi.org/10.1061/(ASCE)0733-950X(1990)116:4(459)
  22. Williams, A.N. and Vazquez, J.H.(1991). Wave interaction with a rectangular pit. Journal of Offshore Mechanics and Arctic Engineering, ASME, 113, 193-198 https://doi.org/10.1115/1.2919919
  23. 齊藤榮一, 沖 政和, 靑木琢三, 磯部雅彦.(1993). 港灣模型を 用いた波の變形特性に 關する硏究. 海岸工學論文集, 第40 卷, 56-60
  24. 小丹浩治, 大里男.(1976). 防波堤隅角部附近の波高分布に關す る硏究. 港灣技術究報告書, 15卷, 第2, 55-88