Journal of Korea Multimedia Society (한국멀티미디어학회논문지)
- Volume 11 Issue 2
- /
- Pages.257-268
- /
- 2008
- /
- 1229-7771(pISSN)
- /
- 2384-0102(eISSN)
A Feature Generation Method for Multimedia Recommendation System
멀티미디어 추천시스템을 위한 속성 생성 기법
- Received : 2007.10.16
- Accepted : 2008.01.02
- Published : 2008.02.29
Abstract
Multimedia recommendation systems analyze user preferences and recommend items(multimedia contents) to a user by predicting the user's preference for those items. Among various kinds of recommendation methods, collaborative filtering(CF) has been widely used and successfully applied to practical applications. However, collaborative filtering has two inherent problems: data sparseness and the cold-start problems. If there are few known preferences for a user, it is difficult to find many similar users, and therefore the performance of recommendation is degraded. This problem is more serious when a new user is first using the system. In this paper, we propose a method of generating additional feature of users and items into CF to overcome the difficulties caused by sparseness and improve the accuracy of recommendation. In our method, we first generate additional features by using the probability distribution of feature values, then recommend items by applying collaborative filtering on the modified data to include additional features. Several experimental results that show the effectiveness of the proposed method are also presented.
멀티미디어 추천시스템은 사용자의 선호도를 분석하여 멀티미디어 상품을 사용자에게 추천하는 시스템이다. 다양한 추천 기법들에서 가장 널리 사용되는 기법은 협동적 여과 방식이다. 그러나 협동적 여과는 정보 부족 문제와 초기 시작 문제가 존재한다. 선호도 정보가 적게 존재하면 유사 사용자 추출이 어려우며, 이러한 문제는 시스템을 처음 사용하는 새로운 사용자에게 더욱 심각한 문제를 발생시킨다. 본 논문에서는 정보 부족 문제를 해결하고 추천 정확도를 향상시키기 위해 사용자와 상품에 대한 속성 생성 기법을 제안한다. 본 논문에서 제안한 기법은 속성의 분포를 이용하여 추가 속성을 생성하고, 추가 속성을 포함한 변형된 데이터를 이용하여 상품을 추천한다. 여러 실험을 통해 제안된 기법의 효과를 확인하였다.
Keywords