
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 2, APRIL 2008 103
Copyright ⓒ 2008 KSII

Digital Object Identifier 10.3837/tiis.2008.02.003

Towards a Server-Centric Interaction
Architecture for Wireless Applications

 Jussi Saarinen1, Tommi Mikkonen1, Sasu Tarkoma2, Jani Heikkinen2

and Risto Pitkänen3, Non-Members
1Department of Software Systems, Tampere University of Technology,

P.O. Box 553, FI-33101 Tampere, Finland
[e-mail: jussi.p.saarinen@tut.fi, tommi.mikkonen@tut.fi]

2Telecommunications and Multimedia Laboratory, Helsinki University of Technology,
P.O. Box 5400, FI-02015 Espoo, Finland

[e-mail: sasu.tarkoma@hut.fi, jani.heikkinen@hut.fi]
3Atostek Ltd., P.O. Box 107, FI-33721 Tampere, Finland

[e-mail: risto.pitkänen@atostek.com]
*Corresponding author: Tommi Mikkonen

Received February 3, 2008; revised March 10, 2008; accepted April 10, 2008;

published April 25, 2008

Abstract

Traditional web-based services that require users to browse via documents and fill out
forms, are difficult to use with mobile devices. Moreover, as the web paradigm assumes
active clients, further complications are introduced in cases where the server is the
active entity, instead of the client. This paper presents a Server-Centric Interaction
Architecture (SCIA) for wireless applications. The architecture enables servers to
initiate communication with clients as well as push secure targeted data to them, in a
piecemeal fashion. It further enables the development of highly collaborative wireless
services with interactive user interfaces.

Keywords: Server initiated interactions, push semantics, mobile services, service platform

104 Saarinen et al.: Towards a server-centric interaction architecture for wireless applications

1. Introduction

The traditional paradigm of web applications is strongly dependant on the client-server
architecture. Servers of the system are considered as somewhat passive holders of content,
and clients are actively downloading data from suitable servers. If necessary, clients can also
modify and upload data, which results in servers updating their databases. The change in the
database is reflected in recently loaded web pages, but those that were previously down-
loaded by clients are not automatically updated. Instead, either the user should reload the
page, or updating capabilities should be explicitly coded in the page, which may add
considerable networking load.

While this scheme should be adequate for systems where data access is the main issue, it
is fundamentally flawed for other types of applications, due to the inherent restrictions.
These restrictions are overcome by introducing new methods for client-server interactions. In
particular, when developing new types of applications, where interactive services are
provided to users, the server must play a more active role. On a small and primitive scale,
this is already occurring, via the use of services such as push email, for instance, as
popularized by Blackberry.

Assigning a more active role to the server enables the creation of services where the
infrastructure can make decisions about information delivery. For instance, assume a
situation where an aircraft will overrun its schedule and passengers need to be rerouted.
While the plane is still in the air, it will be possible for the ground system to perform
necessary rerouting. When the plane finally lands, information regarding the changed routes
will be distributed wirelessly (via mobile phones) to all passengers who need the information.
Other similar examples includes the reservation of concert or sports event tickets when they
become available, notification and opportunity to trade stock options when market events
occur, and changes in web auctions, such as eBay, which can presently be implemented with
techniques such as email notification. We believe that cases where the service provider
knows how to best serve the client are common – people are generally interested in updated
information, not information they previously accessed – but restrictions of available
technologies essentially prevent straightforward implementation of this. Enabling such
services to be pushed to known clients results in improved user experience.

Another issue requiring resolution is user-provided input and associated updates. Clearly,
current mobile Internet applications are mostly based on conventional documents and forms,
even though browsing documents and filling out forms are cumbersome on a small mobile
device. On the other hand, highly interactive web applications are the latest Internet trend.
For example, Google Maps can update the map view in real-time, when the user drags the
map with his mouse pointer. Richer and more flexible interfaces are possible by the use of
technologies such as Ajax [1] and Sun Labs Lively Kernel [2]. Utilizing such technologies in
mobile devices would liberate designers from restrictions associated with documents and
forms, thus, providing the potential for enhanced usability and user experience.

This paper involves constructing a Server-Centric Interaction Architecture (SCIA) that
utilizes push-enabled servers in web applications. In addition, we enable the introduction of
application and user specific information, which should be advantageous for composing web
applications. We developed a proof-of-concept system, where a special-purpose web browser
was extended to handle server-initiated activities. In addition, the system was constructed so
that it is possible to download partial web pages and modify the user interface on-the-fly,
according to the received data, with techniques resembling Ajax. This improves usability of
implemented services, as there is no need to wait for the download of complete pages or the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 2, APRIL 2008 105

upload of frames that contain user-defined data. The work was done as a part of the
Wesahmi project, a joint effort of three Finnish universities, Tampere University of
Technology (TUT), Helsinki University of Technology (TKK), and University of Helsinki
(UHE). TKK provided the client-side implementation and security support implementation,
and UHE provided necessary communication protocol implementation. The paper focuses on
the server architecture and information pushing, which were designed and implemented at
TUT.

The structure of the rest of this paper is as follows. In Section 2 we briefly present the
most essential related work. Section 3 introduces the theory of server initiated interactions
and compares it to existing technologies. Section 4 describes an architecture that supports
these interactions, and Section 5 introduces a sample execution of our system. Then, Section
6 presents the security mechanisms supporting the architecture. Finally, in Section 7,
conclusions are drawn and future work is presented.

2. Related Work

Ajax is the most common current method that enables asynchronous updates to web page
content. It is based on user triggered events, but can also be used to implement server
initiated push via client initiated sessions. The sessions can then be used to relay updates
from server to client without further user intervention. However, Ajax does not allow
development of truly server initiated interactions without significant extensions.

The Ajax derived method Comet uses the same technologies in a different manner. It
supports updates to web page contents via server initiated push. It was shown that it drained
server resources in [3] where the number of clients increase and traditional servlet containers
are used. There are several server-side implementations that address this issue. For example,
the Java-based server Jetty provides an implementation of Asynchronous Request Processing
(ARP) called Continuations [4]. It frees server resources tied to idle request threads by
returning them to the thread pool. Another limitation of Comet applications is imposed by
the HTTP 1.1 standard [5] which requires that a single client must not maintain more than
two persistent connections to a server. A quick resolution to this issue is multiplex
messaging using the Bayeux protocol [6] which is implemented in [7].

Elvin [8] is a framework that supports content-based messaging on mobile devices. It
focuses mainly on supporting occasional disconnection of devices, rather than providing
support for services that require high interactivity. Another significant framework which is
similar is Java Event-Based Distributed Infrastructure (JEDI) [9]. It provides a framework
for large scale publish-subscribe systems and addresses issues related to client mobility.
However, it does not actually handle practical details associated with user interactions in a
mobile environment.

3. Server-Initiated Interactions

We use the term Server-initiated interaction to describe an interactive session formed
between a client and a server launched and controlled by the latter. Thus, the server can push
targeted data to clients, which reduces unnecessary user interference. For example, server-
initiated interactions could be used to guide a user via a check-in procedure at an airport.
When a potential user's mobile device contacts the wireless network of the airport, he or she
can automatically be shown a dialog box that inquires whether he or she would like to check-

106 Saarinen et al.: Towards a server-centric interaction architecture for wireless applications

in or not. If he or she answers yes, he or she can then be guided via the rest of the check-in
process. Suppose that the user is later spending his time at an airport cafe and the flight he or
she checked in for is delayed. The server at the airport receives information about the flight
from the back-end system of the airline company and sends a notification to the user's device.
Since the system knows that the user is at the airport, an advertisement based on his user
profile can be pushed to his or her device or he or she are guided to the nearest VIP lounge
for example, for a more comfortable waiting period. Next, we study different implementation
alternatives.

The most common technologies during the past few years which provide users interactive
services on the Internet were Hypertext Transport Protocol (HTTP) [5] in combination with
Hypertext Markup Language (HTML) [10] and JavaScript [11] or other similar scripting
languages. However, these do not support information pushing. Most calculations are
performed by the server, and the user is forced to wait for a new document to be loaded. This
general application model is described in Fig. 1.

Fig. 1. Traditional web application model

More sophisticated systems exist. Ajax is a relatively new approach that simply uses old
technologies in a new way [1]. It reduces the data flow between a client and a server by
performing most functions on the client side, and provides better bandwidth utilization and
enhanced interaction than earlier methods. It is still not the optimal solution in an
environment where client devices have very limited processing power and battery capacity.
The basic Ajax application model is illustrated in Fig. 2.

A method to achieve event-driven, server-push data streaming called Comet was defined
in [12]. It uses the same technologies as Ajax in a different manner. A Comet application
uses long-lived HTTP connections to enable the server to deliver data to clients. This enables
it to enhance the responsiveness of multi-user applications by eliminating polling, thus,
reducing latency. The Comet application model is described in Fig. 3. First, the Comet
Client initializes a persistent connection to the Comet Event Bus subscribing to a certain
topic or topics. Then, each event that matches the subscription is forwarded to the client via
the connection and finally displayed by its browser. The topic-based subscription model
provides limited granularity, thus, it is not ideal for a mobile environment. Furthermore, the
method does not clearly isolate presentation from content, thus, hindering reuse of

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 2, APRIL 2008 107

applications.

Fig. 2. Ajax application model

Fig. 3. Comet application model

Our server-initiated interaction model aims to enable true targeted and session-based

information pushing. It also aims to be mobile device friendly, by concentrating the

108 Saarinen et al.: Towards a server-centric interaction architecture for wireless applications

computationally demanding tasks to the server as well as minimizing the amount of
transferred data. These characteristics are also supported by the security model defined later
in this paper. An illustration of the interaction model's functionality is displayed in Fig. 4.

Fig. 4. Server initiated interactions application model

After initial service bootstrapping and subscription to the service (1), the client's browser
receives a notification containing the address of the first View (2). In our model a View
equals a set of User Interface (UI) components, each having a unique identifier. The browser
retrieves UI components from the web server (3) and issues a New View request (4) to SCIA,
which responds with the initial contents of the UI components associated with given
component IDs (5). These UI components can then be dynamically updated by the server,
without any user interaction (6-7). All updates the browser receives are tailored on-the-fly,
according to components such as the user's profile or previous input. After the user submits
input via the web server (8-9), his or her browser retrieves UI components and the content of
the second View, in a similar manner to the first. Then, the browser closes the first View by
issuing a close view request. Next, the server is ready to send updates for UI components of
the second View. A procedure performed by an imaginary traveler using our special-purpose
browser executing an airliner application is provided in Fig. 5 - Fig. 8, with the following
events:

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 2, APRIL 2008 109

Fig. 5. Performing check-in procedure

Fig. 6. The user receives a boarding pass

Fig. 7. Gate changes

110 Saarinen et al.: Towards a server-centric interaction architecture for wireless applications

Fig. 8. Boarding time changes

 When the traveler arrives to the airport, our system advertises available services, and
provides an opportunity for the user to check in for the flight (Fig. 5).

 Next, the user selects check-in from the displayed view, and is given a seat to a
previously received flight (Fig. 6). The user is also instructed to proceed to baggage-
dropping area and security inspection.

 While the user waits for his flight, gates of the airport are reallocated. The system
informs the user about the change (Fig. 7).

 Finally, due to the reallocation of the gates, the boarding time is delayed, which is
again notified using our system (Fig. 8).

For test purposes, we have also implemented a simulator that can be used for composing

notifications (Fig. 9). The main differences from other systems introduced, including
traditional web applications and using Ajax, Comet or Elvin as described above, in our
approach are the following:

 The user can go directly to the correct web site when needed using the boot-up
system we have developed. This is convenient when targeting use cases where the
user enters an area where certain services are assumed to be used, such as an airport.

 Sessions associated with users are established at the level of implementation
infrastructure, which requires special measures such as cookies, when relying on the
conventional web infrastructure.

4. Proposed Architecture

We propose an architecture, presented on Fig. 10, for server initiated interactions. In our
architecture the External Model module represents the service provider's back-end system
that provides the SCIA Server application specific data. The SCIA Server module plays a
central role in the architecture, as it utilizes the remaining modules to deliver updates from
External Model to clients, and conveys client input in the reverse direction. In the following,
we introduce the main components of our system in more detail.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 2, APRIL 2008 111

Fig. 9. Event simulator UI

Scheduling Service component is used to filter updates relevant to the state of each client
and enable efficient distribution of the entire server architecture. A client's state is defined in
the server's context by its open Views. Notification Service is used to deliver updates, which
are encapsulated in notification messages, to corresponding clients. WWW Server provides
User Interface (UI) components for the clients' Browsers. Each UI component is assigned an
identifier, which is unique within the scope of a single site. WWW Server also hosts server-
side code that handles client input, and passes it to the SCIA Server Module. Browser listens
to service advertisements, subscribes to the service, and retrieves UI components from WWW
Server. It can have multiple open Views simultaneously, each associated with a unique server
assigned identifier. This enables Views to be independently updated by the server, and
Browser to close specific Views.

Table 1 contains an example of a notification message used to pass information from
SCIA Server to Browser. The message is encapsulated using Simple Object Access Protocol
(SOAP), thus, containing standard SOAP components Envelope and Body.

112 Saarinen et al.: Towards a server-centric interaction architecture for wireless applications

Fig. 10. Overview of the architecture

Table 1. Update to component edt in the ContentChanged SOAP method

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 <env:Body>

 <wes:ContentChanged xmlns:wes="http://www.tml.hut.fi/Research/wesahmi">
 <wes:service>finnair</wes:service>
 <wes:viewID>view1</wes:viewID>

 <rex xmlns='http://www.w3.org/ns/rex#'>
 <event target='id("edt")' name='DOMNodeRemoved'>

 2007-02-01 15:00:00

 </event>
 </rex>

 </wes:contentChanged>
 </env:Body>
</env:Envelope>

The message contains an update to a single UI component with identifier edt. The SOAP

method is indicated by ContentChanged, and the service name by the service child
component. The target View is indicated by ViewID of the method. It has an attribute target
that contains the identifier of the UI component to be updated, and an attribute name that
indicates the type of the event. Span contains the update for the UI component.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 2, APRIL 2008 113

The architecture of the SCIA Server package conforms to the commonly used Model-
View-Controller (MVC) pattern. SCIA DB, which is used as a cache for External Model
specific data, represents the Model of the pattern. It enables the storage and timely retrieval
of application specific data. A View component of MVC is represented by an instance of a
View class and the corresponding set of UI components on the WWW Server. Each View uses
a Subscriber to subscribe to updates about UI components using the Scheduling Service. The
content IDs of each UI component are used to filter updates so that only those associated
with each View are forwarded to Browsers accessing it. The Controller component of the
pattern is represented by the Controller class, which acts as the central module of the overall
architecture. It initializes an instance of SCIA DB at startup, and instances of View whenever
a request for a new view is received from Browser. It also processes client input received
from WWW Server, and forwards it to SCIA DB.

The architecture of the SCIA Server package includes helper classes Interpreter, REX
Generator, and Subscriber. The Interpreter class translates messages from the format used
by External Model to the internal data structure used by the SCIA Server architecture and
vice versa. The module hosts an outbound message buffer, from which External Model may
retrieve new messages containing client submitted data. REX Generator translates given data
into REX [13] format, which is an XML-based format for representing Document Object
Model (DOM) events, which in turn refer to a data structure inside the browser and that can
be interpreted by it. Browser interprets the REX message and updates its internal DOM
presentation of the user interface content accordingly. Subscriber registers to Scheduling
Service for updates about UI components, according to component IDs received from View.
It also provides indirection between View and Scheduling Service, thus, enabling the
implementation of the latter to be switched with minimal effort.

We have developed a proof-of-concept implementation for the architecture in Java. The
size of the SCIA Server implementation is approximately 1,200 lines of source code. The
framework is based on a number of open source software components. Components and their
purpose are described in Table 2.

The application specific parts of the architecture implementation have been indicated in
Fig. 10. The implementation of SCIA DB is mainly application specific, because it supports
caching of the back-end system's data. The code in Interpreter is mostly application
dependent, because the class processes the back-end system's messages. Code segments in
Controller that use the SCIA DB are also application specific, because they need to pre-
extract application dependent key components before data retrieval. Furthermore, UI
components and scripts that handle the user input in WWW Server are application specific.
Also, the REX Generator contains application specific code used to generate the XML
content. The rest of the structure is application independent.

5. Example of Execution

Fig. 11 presents our implementation for when a client enters the network. After initial
bootstrapping with SLP is finished (1) and an SIP session was established, the client sends a
SIP SUBSCRIBE (2) message to the server, to establish a notification channel. Controller
polls for subscriptions and responds with a SIP NOTIFY message containing the address of
the first UI page (4).

114 Saarinen et al.: Towards a server-centric interaction architecture for wireless applications

Fig. 11. Implementation functionality

After retrieving UI components, Browser sends their IDs to the server, encapsulated in a

SUBSCRIBE refresh message via Notification Service (5-6.). Controller retrieves the data
from SCIA DB based on IDs (7), and initializes a new View (8). Next, View sends its initial

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 2, APRIL 2008 115

content to Browser (9-10) and subscribes to updates to the content using Scheduling Service
(11).

When data in External Model changes, it delivers an update to SCIA DB (12), which then
publishes it using Scheduling Service (13). After matching IDs associated with the updated
data to current subscriptions, Scheduling Service delivers the data to View (14), which then
forwards it to Browser (15-16).

When a person using Browser submits input to the system, it is forwarded via WWW
Service to Controller (17-18), which then delivers it to SCIA DB (19). Finally, after storing
the input data locally, the database relays it to External Model (20.). Browser closes the View
by issuing a Close View message (21-22), which causes Controller to delete related objects
(23).

Table 2. Open-source software used in the framework

Software Description

OpenSLP [14]
A C-language implementation of Service Location Protocol (SLP) [15].
Used in initial service bootstrapping. Augmented with support for broadcast
service advertising.

oSIP [16] A C-language implementation of Service Initialization Protocol (SIP) [17].
Used to implement Notification Service.

Fuego [18] A Java-based scheduling middleware platform. Used as Scheduling Service.
Enables event publishing as well as delivery and filtering of events.

X-Smiles browser [19]
A Java-based web browser that supports various XML languages, including
XHTML and XForms [20] natively. Used as Browser to display UI
components and their content.

Apache HTTP server [21] A common web server. Used to host UI components at WWW Server.

Apache Tomcat [22] A web container. Used as a container for servlets that pre-process client
input at WWW Server.

MySQL [23] An SQL Database management system. Used by SCIA DB to cache
application specific data.

OpenSSL [24] A C-language implementation of the TLS and DTLS protocols. Used by
Edge Proxy.

6. Security

Connectivity and security problems introduced by the wireless network environment could
be solved by requiring secure, persistent, client-initiated connections between clients and
edge proxies. Our architecture is security protocol agnostic, in the sense that several
protocols may be employed in this context, including TLS [25], DTLS [26], and HIP [27].
By default, TLS does not have a nonce for the initiator, but DTLS and HIP do have a nonce
to prevent denial of service (DoS) attacks. The HIP protocol also has mobility and multi-
homing support.

Fig. 12 illustrates the initialization of a secure session between the server and a client. In
the context of Fig. 11 this message exchange occurs during SIP Session Initialization. Initial
bootstrapping is used to create identities for users and edge proxies (1-2). The identity
provider (IDP) is trusted by all entities. After receiving an SLP service advertisement, and
verifying its validity, the client starts a secure session with the edge proxy (4). The service
advertisements may also be directly pushed to the terminal using 3G/B3G SIP MESSAGE, if
this is supported.

116 Saarinen et al.: Towards a server-centric interaction architecture for wireless applications

Fig. 12. Initiation of a secure channel

Successful establishment of a client-initiated secure session enables packet filtering and a

client-initiated content channel. Hence, a secure session realizes the control plane of the
system. Our baseline solution uses DTLS and SIP REGISTER messages. When the registrar
receives a REGISTER message with verifiable credentials, it updates the current user contact
information, reflecting the current client-serving edge proxy (4). The response to a
successful registration includes a token originally created by the edge proxy, and signed by
the registrar after verification of credentials. The client stores the token for later
communications with the application server. At this point, the edge proxy configures the
packet filtering mechanism, in order to enable the client-initiated content channels. After the
secure channel was configured, an open channel is maintained by periodic keep-alive
messages. When a failure is detected, the channel is closed and packet filtering is configured
to block traffic.

The secure message exchange during UI Retrieval in Fig. 11 is presented in Fig. 13. The
client includes the token from the secure channel establishment phase in the HTTP request
(1). The application server only replies to the request (4) if it verifies the token successfully
with IDP (2-3).

Fig. 13. UI retrieval via a secure channel

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 2, APRIL 2008 117

Direct signaling may occur in the same access network as the edge proxy or via an
untrusted access network, such as the 3G or B3G access networks. The latter is needed to
support push to an arbitrary location. The role of the edge proxy differs in these two cases. In
the former, the edge proxy also configures the packet filtering rules for inbound and
outbound traffic to and from the client. In the latter, the edge proxy configures rules for
accessing content within the service domain.

7. Conclusion

The restrictions of the client-server architecture on the web are becoming a major obstacle to
the implementation of more innovative services. In particular, there are cases where the
server should have the right to initiate interactions, enabling the future Web to be a more
powerful platform, as proposed in [28]. In this paper we aimed to tackle this issue by
proposing a server-centric interaction model for wireless applications, where user
interventions and input are minimized. Our model provides support for rich user interfaces
via server initiated interactions, and reduces the amount of user activity required, by enabling
the server to filter the data sent to clients residing in a wireless network. We have developed
a proof-of-concept implementation of the architecture, which uses dummy implementations
of an interface to External Model and Interpreter that processes all messages. It was
designed in co-operation with a number of industrial companies to meet their future system's
requirements.

In addition, we have also tackled the issue of limited user interface, and solved some of
the related problems, by allowing partial updates of previously down-loaded web pages. This
results in an Ajax-type user experience, where updates can be performed on-the-fly, and the
user does not need to wait while they are loaded. Instead, the user interface remains available
for other tasks the user is performing.

Finally, the mobile wireless environment introduces various security and connectivity
problems. Regarding this, we described a security protocol agnostic approach to enable user
authentication while maintaining sufficient user privacy. The solution is based on client-
initiated persistent connections, which are authenticated. The introduction of security
measures in this environment creates challenges for device and system performance. In the
presented work, performance and connectivity issues were solved using channel
authentication and a flow token to minimize state information related to the connection.

There are several means to continue our research. First, incompatibility with widely
deployed regular browsers and the general web infrastructure is a serious handicap of the
approach. Therefore, the most important aspect of future work is to devise an architecture
where only minimal deviations from existing web architecture and browsers are implied, but
including the opportunity for all enhancements we have proposed. In practice, a revised
implementation, where Comet [7] is used for implementing push on top of the server
architecture, and a system such as Sun Labs Lively Kernel [2] for implementing client-side,
user-specific data processing for applications, would be a practical step in this direction.

Acknowledgments

This work has been supported by the Finnish Technology Agency (TEKES) and companies
BookIT, Elisa, Finnair, Finnet, Nokia, and TietoEnator. The research has been performed in
collaboration by University of Helsinki, Helsinki University of Technology, and Tampere

118 Saarinen et al.: Towards a server-centric interaction architecture for wireless applications

University of Technology.

References
[1] “AJAX: A new approach to web applications,”

http://adaptivepath.com/publications/essays/archives/000385.php.
[2] “Sun Labs Lively Kernel,” http://research.sun.com/projects/Lively
[3] E. Bozdag, A. Mesbah and A. van Deursen, “A comparison of push and pull techniques for

AJAX,” Technical Report TUD-SERG-2007-016, Delft University of Technology, 2007.
[4] Webtide, http://www.mortbay.org.
[5] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach and T. Berners-Lee,

“Hypertext transfer protocol – HTTP/1.1,” 1999.
[6] A. Russel, D. Davis, W. Greg and M. Nesbitt, “Bayeux Protocol - 1.0 draft 0,”

http://svn.xantus.org/shortbus/trunk/bayeux/bayeux.html.
[7] A. Russel, D. Davis, W. Greg and M. Smith, http://www.cometd.com.
[8] P. Sutton, R. Arkins and B. Segall, “Supporting disconnectedness-transparent information

delivery for mobile and invisible computing,” In CCGRID '01, page 277, Washington DC, USA,
2001.

[9] G. Cugola, E. D. Nitto and A. Fuggetta, “The JEDI event-based infrastructure and its application
to the development of the OPSS WFMS,” IEEE Trans. Softw. Eng., 27(9):827-850, 2001.

[10] T. Berners-Lee and D. Connolly, “Hypertext markup language - 2.0,” 1995.
[11] D. Flanagan, “JavaScript: The Definitive Guide,” O’Reilly Media, 2006.
[12] A. Russel, “Comet definition,” http://alex.dojotoolkit.org/?p=545.
[13] R. Berjon, “Remote Events for XML (REX) 1.0,” Working Draft, W3C, Oct. 2006.
[14] OpenSLP homepage, http://www.openslp.org/.
[15] E. Guttman, C. Perkins, J. Veizades and M. Day, “Service location protocol, version 2,” RFC

2608, IETF, June 1999.
[16] “The Gnu oSIP library,” http://www.gnu.org/software/osip/.
[17] J. Rosenberg et al., “SIP: Session initiation protocol,” RFC 3261, IETF, June 2002.
[18] “Fuego middleware,” http://hoslab.cs.helsinki.fi/homepages/fuego-core/.
[19] Xsmiles homepage, http://www.xsmiles.org/.
[20] M. Dubinko, L. Klotz, R. Merrick and T. Raman, “XForms 1.0,” W3C Recommendation, Oct.

2003.
[21] Apache HTTP server project, http://httpd.apache.org/.
[22] Apache Tomcat, http://tomcat.apache.org/.
[23] MySQL homepage, http://www.mysql.com/.
[24] OpenSSL project homepage, http://www.openssl.org/.
[25] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.1,” RFC

4346, IETF, Apr. 2006.
[26] E. Rescorla and N. Modadugu, “Datagram Transport Layer Security,” RFC 4347, IETF, Apr.

2006.
[27] P. Nikander, J. Ylitalo and J. Wall, “Integrating Security, Mobility, and Multi-homing in a HIP

way,” In Proceedings of Network and Distributed Systems Security Symposium, San Diego, CA,
USA, Feb. 2003.

[28] A. Taivalsaari, T. Mikkonen, D. Ingalls and K. Palacz, “Web Browser as an Application
Platform: The Lively Kernel Experience,” Technical Report TR-2008-175, Sun Microsystems
Laboratories, Menlo Park, CA, USA, 2008.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 2, APRIL 2008 119

Jussi Saarinen had his MSc degree from Tampere University of Technology, Tampere,
Finland in 2006 and has worked as a researcher in the Institute of Software Systems,
Tampere University of Technology for four years. His research topics include service
interworking in heterogeneous networks, server initiated interactions in mobile networks,
and model-driven development of mobile business processes. While conducting research
in these fields, he has contributed to numerous papers as well as participated in the
development of prototype software.

Tommi Mikkonen had his MSc in 1992, a Lic. Tech in 1995, and a Dr. Tech in 1999,
in software engineering from Tampere University of Technology, Tampere, Finland,
respectively. He is currently a professor of wireless and wired distributed applications in
Tampere University of Technology, Tampere, Finland. Dr. Mikkonen’s research interests
lie in Web and mobile programming, software engineering for the Web, and distributed
applications, in which he has authored numerous scientific articles. In addition to
academic contacts, Professor Mikkonen also has close links to industry. Prior to joining
the university, he worked as a Symbian chief architect at Nokia, and Dr. Mikkonen is
currently a visiting professor at Sun Microsystems Laboratories, where he participates in
the development of Sun Labs Lively Kernel, a browser-based system designed for
implementation of interactive applications.

Sasu Tarkoma received his M.Sc. and Ph.D. degrees in Computer Science from
Department of Computer Science, University of Helsinki. He is currently a professor of
Department of Computer Science and Engineering, Helsinki University of Technology.
He is Docent at the Faculty of Science, University of Helsinki. He has managed and
participated in national and international research projects at University of Helsinki,
Helsinki University of Technology (TKK), and Helsinki Institute for Information
Technology (HIIT), respectively. He has over 100 publications, including 56 refereed
scientific articles, and contributed to several books on mobile middleware. He has
reviewed articles for many scientific journals, conferences, and workshops.

Jani Heikkinen is a Ph.D. student at Department of Computer Science and Engineering,
Helsinki University of Technology (TKK). He obtained his Master of Science degree from
this department in 2007. He has participated in the WeSAHMI and TrustInet projects,
which were funded by Finnish National Technology Agency Tekes and industry. His
research interests include distributed software systems, focusing on information system
security.

Risto Pitkänen had his MSc. degree, 1997 and Dr Tech degree, 2006 from Tampere
University of Technology. He researched and taught technologies related to distributed
systems for many years at Tampere University of Technology. He has written several
articles on formal methods and specification-driven development of distributed and
embedded systems. At present, he is a software architect at Atostek Ltd, a software
development company specializing in solving challenging problems.

