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Optimal Filtering for Linear Discrete-Time Systems
with Single Delayed Measurement

Hong-Guo Zhao, Huan-Shui Zhang*, Cheng-Hui Zhang, and Xin-Min Song

Abstract: This paper aims to present a polynomial approach to the steady-state optimal filtering
for delayed systems. The design of the steady-state filter involves solving one polynomial
equation and one spectral factorization. The key problem in this paper is the derivation of
spectral factorization for systems with delayed measurement, which is more difficult than the
standard systems without delays. To get the spectral factorization, we apply the reorganized
innovation approach. The calculation of spectral factorization comes down to two Riccati
equations with the same dimension as the original systems.

Keywords: Diophantine equation, reorganized innovation, spectral factorization, steady-state

optimal filtering.

1. INTRODUCTION

The optimal steady-state filtering problem for linear
time-invariant plants has been well studied by two
classic methods in the past decades, one is the Kalman
filtering formulation [1,2], the other is the polynomial
equation approach (Weiner filtering design) [3-5]. In
the Kalman filtering formulation, the steady-state
filter is designed by solving algebraic Riccati equation.
For the polynomial equation method, the calculation
of the steady-state filter involves one Diophantine
equation and one spectral factorization [6-9]. However,
most of the previous works for steady-state filtering
focus on the delay-free systems. In the case of time-
delay, the steady-state filtering for discrete-time
systems can in principal be investigated via system
augmentation and standard Kalman filtering
(polynomial  approach) [2]. However, the
augmentation leads to higher dimension especially
when the time-delay or system dimension is large and
thus results in much expensive computation. On the
other hand, we noted that the optimal filtering for
time-varying systems with delayed measurement has
received important progress [10,11]. Recently, [12]
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has derived the finite-horizon filter by adopting the
so-called reorganized innovation analysis approach.
The time-varying filter is calculated by solving
standard Riccati difference equations with the same
dimension as the original systems. The reorganized
analysis approach has been shown to be powerful to
deal with some complicated problems such as He
fixed-lag smoothing and so on [13].

In sprit of the reorganized innovation analysis
approach developed in the previous works, this paper
is to study the steady-state optimal filtering for the
systems with delayed measurement based on the
polynomial approach. The steady-state filter is derived
by using the orthogonality between the estimation
error and the observations. It is shown that the filter
can be designed by performing one polynomial
equation and one spectral factorization where the
latter is the key problem that is to be solved in this
paper. With the application of the reorganized
innovation  analysis  approach, the  spectral
factorization is obtained by solving two different
standard Riccati difference equations.

The rest of this paper is organized as follows. The
problem to be addressed is stated in Section 2. The
steady-state optimal filter i1s designed based on one
Diophantine equation and one spectral factorization in
Section 3. Section 4 presents the main results by using
reorganized innovation approach. Section 5 gives a
example to show the calculational procedure of
steady-state optimal filter. The conclusions are drawn
in Section 6.

2. PROBLEM STATEMENT

Consider the following linear discrete-time systems

x(t+1)=®Ox(t) +Tu(t), 0<t <>, (1)
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where x(¢)eR"” and wu(t)e R’ represent the state

and the systems noise, respectively. The state is
observed by two different channels with delays as

Viy(t) = Hpx(t —d;) + v, (0), i=0,1, (2)
where the time-delays d;, i = 0,1 are assumed to be in
increasing order as 0=d, <d; =d. y;(t)eR” are
delayed measurements, v (t)e R are the
measurement noises. The mnoises u(f),v;(7) are

mutually uncorrelated white noises with zero means
elulkn’ (= 0,8,
&lvi (k)v(z.;) ()] = Qv(i) O, Where Oy is Kronecker

and covariance matrices

delta function, T stands for the transpose, and &
denotes the mathematical expectation.

Assumption 1: The above systems are completely
controllable and completely observable.

In (2), y;(#),i=0,1 mean the observation of the

state x(f—d;) attime ¢ with time-delayd, . Let y(¢)

denote the observation of the systems (1)-(2) at
time#, then we have

Yoy ()
)= . 3
y() L’(l)(”} 3)
Theretore, (2) can be rewritten as
oy 0] x(0)
)(r)“‘li O H(l)“:x(td)il_i_vs(t)a (4)

vioy ()

where 1;,=t-d, and v (¢)=
vy (7)

} 1S  white

noise of zero mean and covariance matrix
Q B QV(O) 0
Ve T ’

i 0 QV(l) ]

Our problem can be stated as: Given the
observation {y(0),---,y(r)}, find a steady-state

optimal filter X(¢|f)=R (q’1 Yy(t) that minimizes the
following mean square error

elx(t) — 2t | O [x(2) - (¢ | 1)),

where E(q_l) is a stable polynomial matrix, and ¢’
1s the backward shift operator.

3. STEADY-STATE OPTIMAL FILTERING

Using (1), we have
x(1)=(1,~®g ") " Tu(t-1), 5)

where ([, — <Dq—] )_1 has the following form as
(I, =®q )™ =47 (g7 )C(g™), (6)
and
Ag HY=1+aq " ++a, g™,
Cg )=Co+Cg ™ +++Cpq ™

are assumed to have no common factors, and A(q_l)

is stable polynomial.
By substituting (6) into (5), it follows that

x(t)= A7 (g"HB(g Hu(t 1), (7)

where B(g™")=C(q .
On the other hand, it follows from (4) that

y(6)=H(g )x(t) +v,(2), (8)
_ H )
where H(qwl) = e
L’(l)q d]

Substituting (7) into (8), we obtain that

A(g HYy(6) = D(g ur - 1) + A(g v, (0),
where
D(gH=H(g HB(g™. 9)

Remark 1: Since we assume that systems (1)-(2) is
completely controllable and completely observable,
then D(¢™) and 4(g™) have no common factor [2].

Let

r(1) = D(q Du(t 1)+ A(g "W, (),

which is the sum of two correlated moving average
(MA) processes. We easily obtain the spectralmatrix

or spectrum S},(q,q"l) of r(t) as

S, (q.9”")=D(g HQ,D" () + Aq7)Q, 4" (9).

Assumption 2: Spectral density matrix D(e_jw)
0,D" (e/?)+ A(e™ )0, AT (e/?) s positive definite

matrix forall —7<w <.

In view of Assumption 2, we have the following
spectral factorization

E(qHE" (")

(10)
= D(¢g Ho,D" (9)+ 4(g™HQ, 4" ().

where E(g”'") is viewed as the spectral factor, which is
stable.
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Remark 2: Assumption 2 implies that there exists a
unique and stable spectral factor E (q_l) in spectral
factorization (10), see [6] and references therein.

Remark 3: The polynomial D(q_l) in (9) is not

standard form studied as in [1]. One possible approach
to such spectral factorization is the state augmentation
which, however, results in expensive computation. In
what following, we shall present one simple approach
to above spectral factorization.

Firstly, we define the following sequence

w(t)=y(t) - y(t|t-1), (11)

where w(¢) 1s called the innovation associated with
measurement {y(0),---,y(r)}, and y(z|t—1) is the
projection of p(r) onto the linear space L{w(0),
w(l),---,w(t —1)} which is spanned by innovation
sequence {w(0),w(l),---,w(t—1)}.

With the support of (4) and (11), we have that

Hey 0| &]e-1)
y(t)—[ . H(JL(W_D}w(r). (12)

By applying the projection formula in Hilbert space,
x(t; |t —1) is computed by

Mtglt-1)=q %@t -1)+K(g @),  (13)

where ¢ “%(t|1—1)=%(t,|t,-1), and K(g )
is given by

d -
K@ hH=>Kq", (14)
i=1

in the above, K; is defined as
K; = elx(t,)w' ¢t -0, i=1,-.d, (15)
where innovation covariance matrix Q,, is defined as
0, = elwnyw' (1)]. (16)
Substituting (13) into (12), it follows that
¥(0) = H(g )| 1 =D+ K(g™Hw) +w(o), (17)

where K (q_l) is given as follows

0
.
K(q )_{H(I)K(q_l)}- (18)

On the other hand, X(#|7—1) can be calculated by

x(t|t—-1)=Dx(t -1|t—-2)+ Kyw(t 1), (19)
where K, is defined as

Ky = e[x()w’ (1-1)10,". (20)

From (19), we have
Ret|t-D=(, -Pg ) Kyw(t-1). (21)
Substituting (21) into (17), we obtain

Y0 =H(g YL, - ®q ) Kew(t -1)

(22)
+ K(gHw(r) + w(®).

By applying (6) and (22), we obtain the
autoregressive moving average (ARMA) innovation
model as

A(g Yy = H(g HC(gHKoq 'w(t)
+ K(g""A(g HYyw(t) + Alg Hw(e).
(23)
Note that the w(¢) is the innovation, that is, w(?)

is mutually uncorrelated. Then we have the following
results.

Theorem 1: The spectral factor E(q_l) is
computed by

E(@HY={Hg")C(g HKyq™

) oy (24)
+K(gHa(g™H + A(g™HL0;2,

where K, and Q, are defined as in (20) and (16),

respectively. K (q_l) can be computed by applying
(18), (14) and (15).
Proof: By using (23), the proof is straightforward.[]
Now we are in the position to present the steady-
state optimal filter using Theorem 1 in the following.
Theorem 2: Consider the single measurement
delayed systems (1)-(2). The steady-state optimal
filter is formulated as

#t10)=S(g HE (@ )y, (25)

where S(q_l) and R(q_l) are solutions of the
following Diophantine equation

B¢ Ho,B" (9)H" (9)
=S¢ HE" (q)+q4(g HR" (9).

Proof: Considering the steady-state optimal filter
x(t|t) is the linear function of the known

measurement  {¥(0),---,y(t)}, we
x(t|t) has the form as (25).

(26)

suppose that
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Then the filtering error X(¢|t) can be given as
follows

x(t)t)=x(t)—x(t|1).

On the other hand, we give any admissible linear
function of the measurement, i.e.,

()= F(g Hy(t),

where F (q“l) 1s any stable polynomial matrix.

It 1s well known that there exits the orthogonality
between the filtering error Xx(¢|7) and any linear

function 77(¢) . Then we can obtain

elx(t|Hn' (1)]=0. (27)

By applying (27), polynomial equation (26) can
easily be obtained. []

Remark 4: The solvability and uniqueness of the
polynomial equation (26) have been well studied in
the previous works, see [14,15] for details.

Remark 5: Theorem 2 presents the steady-state
optimal filtering for linear discrete-time measurement
delayed systems. The steady-state optimal prediction
problem and the fix-lag smoothing problem for time-
delayed systems (1)-(2) can also be solved easily by
using a similar discussion.

Remark 6: Although we have presented the filter in
Theorem 2, the calculation for the spectral factor

E(g™") remains to be computed. Note that E(g ")
is related with K;,i=0,--,d and Q,, in what

following, we shall unknown
polynomial matrices.

compute these

4. COMPUTATION OF K.,i=0,--,d AND Q,,

In this section, our aim 1is to compute
K;,i=0,---,d and Q,. The key technique is to

employ the reorganized innovation analysis and
projection approach in Hilbert space.

4.1. Reorganized innovation
To calculate the Q,, and K;,i=0,---,d, we

firstly suppose that the systems (1)-(2) are finite-
horizon. Then, the observation y(f) in (3) can be

rewritten as

(y(o)(f), Oﬁf<d,
y(t) =1 y(O)(t)’ o (28)
Y@

Next, we are to organize the current and delayed
measurements and introduce a delay-free measure-

ment. It is easily known that the linear space
L{y(0),y(1),---,y(¢t)} can be equivalently written as

L{py (YL 531 (8 + Dy, (03

It is clear that y;(s) and y,(s) satisfy

yi(s) = Hix(s) +v(s), (29)

Y2 (s) = Hyx(s) +v,(s), (30)
where

Hy=Hy,Hy = l:i((?))_,

Vi1(8) = Y0y (8), ¥2(5) = 70 () }

’ | Yy (s +d)

and

vy ($)
Vi (8) =v(g)(s), va(s) = vy (s +d)

are mutually uncorrelated white noises with zero
means and covariance matrices

0 Dy

Qvl = QV(O) 2 sz =

Obviously, the new measurements y;(s) and

¥,(s) are no longer with time-delay. Using the new

measurements, we can introduce the following
sequence

W(S,l):—’yl(S)-—jil(S,l), (31)
w(s,2):y2(s)——j>2(s,2), (32)

where J;(s,1) is the projection of y;(s) onto the

. : oy 5—] n
linear space L{{y,()}Zo; M D}im, 1}, and 3(s)
is the projection of y,(s) onto the linear space

L{{»()}i%0)-
In view of (29)-(32), it follows that

w(s, 1) = Hx(s,1) +v(s), (33)
w(s,2) = Hyx(s,2) + vy (), (34)
where

x(s,1) = x(s) — x(s,1),
X(s,2) = x(s) — x(s,2),

where x(s,1) and x(s,2) are defined as in y,(s,1)
and P, (s,2).
Based on the discussion as in [12], as ¢ — +oo, it



382 Hong-Guo Zhao, Huan-Shui Zhang, Cheng-Hui Zhang, and Xin-Min Song

is known that {w(0,2),---,w(Z;,2);w(t; +1,1), -,
w(t,1)} is called the reorganized innovation sequence

Next, as ¢t — +oo, considering state equation (1)

and reorganized measurement (30), we introduce the
following steady-state Riccati equation

P, =0P®" +TQ,I" ~ORH;Q,, H,Pd, (35)

where P, is the one-step ahead state estimation error
covariance matrix. Oy, denotes the steady-state
covariance matrix of w(-,2), and can be computed
by

0,, =H,PH; +0, . (36)

Similarly, as ¢ — 4o, considering state equation

(1) and reorganized measurement (29), we introduce
the following steady-state Riccati equation

B(i+1)=0R()d" +TQ, I’ a7
—®R()H{ 0 (i, DH,P()®T,i>0,

where F (i) is the one-step ahead state estimation

error covariance matrices. Q,,(i,1),i >0 denote the
steady-state covariance matrices of w(i,1), and can
be calculated as

0,(.)=HROH] +0Q,,i>0. (38)

Further, for the convenience of discussion, we now
give the following definition
My (t+ j,0) = elx(t + )T (1,2)],
M(t+ j,t+i) = g[x(t + NE (¢ +i,1)],i>0,

where
X(1,2) = x(t) — x(¢,2),
X+, =x(t+i)—x(t+1i,1).

In the above, x(z,2) is the projection of x(#) onto

the linear space L{{w(S,Z)}tS_:lo}, and x(r+1i,1) is
the projection of x(r+i) onto the linear space

L{{w(s, 2)YZos (s, DY
As t—>+oo, M,(t+j,t) and M+ j,t+i) will
be independent of the time ¢, which is rewritten as
My(j,0) and M,(j,i)
According to [12], M,(j,0) and M,(j,i) canbe
calculated as, respectively
RIA4 T/, j<o,

M>(j,0)=4 ~. (39)
(I)JP2 _] > 0,

RO)A ()4 G=1), i

Y (40)
®/ R (i),

Ml(jsi):{

1</,
where

4y =D - ORH, O H,

A4 () =0 -OROH{ 0, (i, HH],, i>0,

P, and B(i), i>0 are calculated by (35) and (37).
O, (,1), >0 and @, ~are calculated via (38) and

(36).

4.2. Solutions to the Q,, and K;, i=0,---,d

Firstly, the innovation covariance matrix will be
given in the following theorem, which is derived
based on the reorganized innovation approach. The
calculation does not require the augmented systems.

Theorem 3: The steady-state innovation covariance

matrix J,, is computed by

0, =
- -
HioyMy(d,d)H () + Oy Ho)[M (0, )] Hyy

T T
H(I)Ml (O,d)H(O) H(l)PH(]) + Qv(l) ]

(41)

where

P = Py — My(0,0)H] O} H, [ M, (0,0)
d—1
- 2 M (0,DH] O, (DH (M (0,)]"
i=1
M,(,) and Q,(,1), i=1,---,d are calculated via
(40) and (38), respectively. P is given by (35).
Proof: From (11), we get

A Hoy O x(t)-%@]r-1)
w(t) = 0 Hyy || x(t) - &ty 11-1) (42)

+v,(f). |

Note that x(z;|7—-1) 1is the projection of
state x(f;) onto the linear space L{{w(, 2)};1 0
{w(i,l)}’;-;} y .1}>» by making use of projection formula,

x(t; |t —1) can be calculated as
xX(tg 1)

= Pr Oj{x(td) | W(O, 2)5 T W(td > 2)9
w(ty; +1,1),--,w(t =1L 1)}

= 3(t4,2) + elx(tg )W (14,2)10,, Wt 2)

(43)



Optimal Filtering for Linear Discrete-Time Systems with Single Delayed Measurement 383

d—1
+ 3" elx(t)w' (ty +i,D]05 G, Dw(t, +i,1)
i=1

= %(t7,2) + M, (0,0)H; O, w(t;,2)
d-1
+ 3 My (0,0 H 0,1 G, Dw(ty +i,1).
i=1
At the same time, note that

x(t|t—1)=x(2,1). (44)

By substituting (43) and (44) into (42), the
innovation w(¥) allows us to write

Hgy 0 &)
w(t) = { 0 H(l)M () } +v (1), (45)
where
x(t,1) = x(¢) — x(¢,1),
and

c(®)=x(t;)—x(t; |t-1)
= %(t4,2) - M5 (0,00H; O}, w(t;,2)

d-1
= M(0,)H] @, (i, hw(t, +i,1).
i=1

Then the innovation covariance matrix @, 1is
given by

0 :{H(O) 0 }

S[FLDF (1,1)] g[i(t,l)gr(t)ﬂ 6,
sOF @) els(t)e (0]

B T
X +0, .

In view of (40), it follows

%, Dx (1,1 = M(d,d). (47)
Also, by

uncorrelated  with
follows that

considering the fact that ¢(f) is
w(t; +i,1), i=1---,d-1, it

ele(OF" (1.)]= elx(14, DT (1,1)]= My(0.d). (48)
Further, note (46), we have

ele(Dg’ ()]

49
= Py - My(0.0)H1 0} H,[ M, (0,0)) )

d—1
= My(0,)H{ O, (i, ) H M, (0,i)]".

i=1

Substituting (47), (48) and (49) into (46), (41) can
be easily obtained. ]

Now we are to calculate K; based on the

reorganized innovation approach in the following
theorem.

Theorem 4: The K, is computed by

Hgy 07
Ky =[M(d,d~1) 5] 0 Hy| & (50)

where

S = M,(d +1,0)

1
~ 3" My(d + j,0)H; O, Hy[ My (j - 1,0)'
j=0
d-2 |
= > M(d, )HH{ O3 G.DH[M; (-1, )]
j=1

The K;, i=1,---,d is computed by

T
1
151
0 HOJ Y )

K; =[M;(0,d 1) N(f)][

where

N(i) = M (i,0)

0
= Y My (=, 0H] O Hy[ My () = 1,01
J==i
d—i-1 _ T
- X MODH] G, GDH My (=i, )Y
j=1

in the above, M,(,-) and M,(,-) are computed as
(40) and (39).Q,,(-,1) and Q,, are calculated via

(38) and (36).
Proof: Note (45), we have

ey VTR =5D .
w(t—z)-—{ 0 H(]J{ g(t_i)}LvS(t—z), (52)

where

X(t—i,1)=x(—-1)—x(—1i1),
c(t—)=x(t; —i)—x(ty —i|t—i-1).

Applying the projection formula and the reorganized
innovation, we get
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¢(t —1i)

=x(t; ~1)—Proj{x(t; —i)| w(0,2),---,w(t;,2),
w(t; + L1, w(t —i—1,1)}

=x(t; —i)—x(t; —1,2)

0
+ Y elxty —Dw (tg + 1,210 Wty + /,2)

J=—i
d—i—1
_ ; elx(ty; —iw' (t; + j,1)] (53)
x O, (7, )w(ty + j,1)
= %(1; —1,2)

0
+ 2 My(=j—i,00H; O wity + j,2)
Jj=—i
d—i-1 . |
- D My(=i, HH; Oy, (j,Dw(ty + j,1).
=1

Noting that x(f;) is uncorrelated with v (¢ 1),
i=0,---,d. Substituting (52) into (15), it follows that

K; =| slx(t)¥ (1=i,)] elx(tg)s” (¢~ i,1)]]
X“H(O) 0 ol (54)
0 Hy

In view of (40), we have that
elx(t )& (1 —i,1)] = M,(0,d - ). (55)

Substituting (53) into  &[x(¢; )gT (t—1i,1)], ityields

elx(ty)s” (t—i,1)]

= e[x(t)% (tg —1,2)]

0
= 3 elxt)w (tg + 1,210,

j=—i
x Hy[M,(~j ~i,0)]"

d—i—1
~ 3 elx(t)w (tg + 7,010, (1)

s=l (56)
x Hy[ My (~i, NI

0
= M,(i,0)~ Y My (~j,0)H; O,
j=—i
x Hy[My(~j —1,0)]
d—i—1 . :
- > M0, HH{ 0, (j,1)
j=1

x Hy[M; (=i, )1

Substituting (56) and (55) into (54), we can prove (51).
By applying the similar approach, K, can be easily

obtained as (50). []
Remark 7: Theorems 3 and 4 have given the

solutions to @, and K;, i=0,---,d based on

projection theory in Hilbert space and time-domain
reorganized approach. It should be pointed that the
reorganized innovation is different from the
innovation in Kalman filtering formulation, which is

defined in (11).
5. NUMERICAL EXAMPLE

In this section, a numerical example will be given
to verify the computational procedure of the proposed
approach. Consider the systems (1)-(2) with d =1
and

O = 03, F = 1, H(O) = 05, H(l) = 0.2

Here, we suppose that u(?), v (r) and vy (2)

are mutually uncorrelated white noises with zero
means and covariance as 1.

AgH=1-03¢", C(¢")=1 and
0.25
0.2g "
we can obtain the spectral factor as follows

Obviously

B(g H=1, D(q_l) = { } Applying Theorem 1,

~0.7+0.4285¢""  0.7199-0.3847¢"

Eg)= . )
0.6773-0.2869¢ ~ 0.7545-0.1401q

In terms of Theorem 2, we solve (26) and obtain
S(¢"')=[-1.207 0.7388]. By substituting E(g~")

and S (q—l) into (25), thus steady-state optimal filter

can be designed. The simulation results are shown in
the following Fig. 1.
It can be shown from Fig. 1 that the filter x(¢|7)

12 T ! T T
: : : the original x
— the filtering for x| |

10k RN . |-~

N . . SO FETT ]

0 50 100 150 200 250 300

Fig. 1. Tracking performance of the filter x(¢|¢).
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can track the original state x(f) very well, which
implies the presented method in this paper is effective.

6. CONCLUSION

We have studied the steady-state optimal filtering
problem for discrete-time systems with instantaneous
measurement and single delayed measurement. By
applying the time-domain reorganized innovation
approach, based on ARMA innovation model, spectral
factorization is easily calculated. The calculation does
not require the state augmentation. Thus the steady-
state optimal filter is designed via one spectral
factorization and one Diophantine equation. The key
technique that is applied in this paper is the
reorganized innovation analysis approach in Hilbert
space.
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