SOLUTION AND STABILITY OF AN EXPONENTIAL TYPE FUNCTIONAL EQUATION

  • Published : 2008.05.31

Abstract

In this paper we generalize the superstability of the exponential functional equation proved by J. Baker et al. [2], that is, we solve an exponential type functional equation $$f(x+y)\;=\;a^{xy}f(x)f(y)$$ and obtain the superstability of this equation. Also we generalize the stability of the exponential type equation in the spirt of R. Ger[4] of the following setting $$|{\frac{f(x\;+\;y)}{{a^{xy}f(x)f(y)}}}\;-\;1|\;{\leq}\;{\delta}.$$

Keywords