Web Mining for Discovering Interesting Information using Effective Clustering

효율적인 클러스터링을 이용한 관심 정보 추출을 위한 웹 마이닝

  • Published : 2008.06.30

Abstract

In internet being a repository of massive information, we easily may not find our desired information, this issue also exists in e-commerce which gets rapid growth. In most of e-commerce sites, the methods furnishing information have been made use of statistical analysis or simple process by category-oriented, but these can't represent diverse correlation among products information and also hardly reflect users' purchasing patterns precisely. In this thesis, we propose more efficient web mining ways for discovering interesting information using effective clustering in e-commerce, which get achieved more suitable relationship among products information using both sequential patterns and association rules in category-independent, and experiments show the efficiency of our proposed methods. And we propose search using effective clustering rapidly.

인터넷의 전자상거래에서 대규모 정보 저장소에 있는 원하는 정보를 신속하게 검색하기란 어렵다. 대부분의 전자상거래 사이트에 있어서 정보를 제공하는 방법으로는 통계적 분석이나 분류별 지향의 간단한 과정을 통해 생성된다. 그러나 이러한 것은 생성 정보들 사이의 다양한 상호관계를 표현할 수 없고 사용자의 정확한 구매 패턴을 반영하기 어렵다. 본 논문에서는 전자상거래에서 효과적인 클러스터링을 이용한 다양한 관심정보 추출을 위한 효율적인 웹 마이닝을 제안한다. 이러한 방법은 분류별 항목에서 순차 패턴과 상관 규칙을 이용하여 생성 정보들 사이의 보다 적합한 상관관계를 구성하고 제안된 방법을 통해 효율적인 실험 결과를 나타낸다. 그리고 효과적인 클러스터링을 이용하여 신속한 검색을 제안한다.

Keywords