STRONG CONVERGENCE OF AN IMPLICIT ITERATION PROCESS FOR A FINITE FAMILY OF STRONG SUCCESSIVELY Φ-PSEUDOCONTRACTIVE MAPS

RUDONG CHEN AND QIAN MIAO

ABSTRACT. The aim of this paper is to prove convergence of implicit iteration process to a common fixed point for a finite family of strong successive Φ -pseudocontractive mappings. The results presented in this paper extend and improve the corresponding results of S. S. Chang [On the convergence of implicit iteration process with error for a finite family of asymptotically nonexpansive mappings, J. Math. Anal. Appl. 313 (2006), 273–283], M. O. Osilike [Implicit iteration process for common fixed points of a finite finite family of strictly pseudocontractive maps, Appl. Math. Comput. 189(2) (2007), 1058–1065].

1. Introduction

Let K be a nonempty closed convex subset of $E, x_0 \in K$ be any given point and $\{T_i\}_{i=1}^N : K \to K$ be N mappings. Let $\{\alpha_n\}$ be a sequence in [0, 1], with $\limsup_{n\to\infty} \alpha_n < 1, x_n$ defined by

(1.1)
$$\begin{cases} x_1 = \alpha_1 x_0 + (1 - \alpha_1) T_1 x_1, \\ x_2 = \alpha_2 x_1 + (1 - \alpha_2) T_2 x_2, \\ & \ddots , \\ x_N = \alpha_N x_{N-1} + (1 - \alpha_N) T_N x_N, \\ x_{N+1} = \alpha_{N+1} x_N + (1 - \alpha_N) T_1^2 x_N, \\ & \ddots , \\ x_{2N+1} = \alpha_{2N+1} x_{2N} + (1 - \alpha_{2N+1}) T_1^3 x_{2N+1}, \\ & \ddots . \end{cases}$$

A family $\{T_i\}_{i=1}^N$ is called *uniformly Lipschitzian* with a Lipschitzian constant $L \ge 1$, i.e., there exists a constant $L \ge 1$ such that

$$||T_i^n - T_i^n|| \le L ||x - y||, \quad \forall n \ge 1, \ x, y \in K, \ i = 1, \cdots, N.$$

©2008 The Busan Gyeongnam Mathematical Society

Received September 15, 2007.

Key words and phrases. Fixed point, pseudo-contractions.

This work is supported by the National Science Foundation of China, Grant 10771050.

¹⁰⁵

Definition 1.1. A family $\{T_i\}_{i=1}^N$ is called generalized strongly successively Φ -pseudocontractive if, for all $x, y \in E$, there exist $j(x-y) \in J(x-y)$ and a strictly increasing function $\Phi: [0,\infty) \to [0,\infty)$ with $\Phi(0) = 0$ such that

$$\langle T^n x - T^n y, j(x - y) \rangle \le ||x - y||^2 - \Phi(||x - y||).$$

Definition 1.2. A Banach space E is said to satisfy Opial's condition if, for any $\{x_n\} \subset E$ with $x_n \rightharpoonup x$, the following inequality holds:

 $\liminf_{n \to \infty} \|x_n - x\| < \liminf_{n \to \infty} \|x_n - y\|, \quad \forall y \in E \ (y \neq x).$

Tool 1: Let E be a real reflexive Banach space which satisfies Opial's condition, K be a nonempty closed convex subset of E and $T: K \to K$ be an continuous pseudocontrative mapping, Then I - T is demiclosed at zero.

Tool 2: Let E be a uniformly convex Banach space with the modulus of uniform convexity δ_E . Then $\delta_E : [0,2] \to [0,1]$ is continuous increasing, $\delta_E(0) = 0$ and $\delta_E(t) > 0$ for all t > 0, while

$$||cu + (1 - c)v|| \le 1 - 2\min\{c, 1 - c\}\delta_E(||u - v||)$$

whenever $0 \leq c \leq 1$ and $||u||, ||v|| \leq 1$.

Thereom 1.1. ([1, Theorem 1, p. 276]) Let E be a real uniformly convex Banach space satisfying Opial's condition, K be a nonempty closed convex subset of E with $K + K \subset K$, $\{T_i\}_{i=1}^N : K \to K$ be asymptotically nonexpansive mappings with $F = \bigcap_{i=1}^N F(T_i) \neq \emptyset$. Let $\{u_n\}$ be a bounded sequence in K, $\{\alpha_n\}$ be a sequences in [0,1], $\{h_n\}$ be a sequence defined by

$$||T_i^n x - T_i^n y|| \le h_n ||x - y||, \quad x, y \in K,$$

and $L = \sup_{n \ge 1} h_n \ge 1$ satisfying the following conditions: (a) $\sum_{n=1}^{\infty} ||u_n|| < \infty;$ (b) $\sum_{n=1}^{\infty} (h_n - 1) < \infty;$

- (c) there exist constants $\gamma_1, \gamma_2 \in (0, 1)$ such that

$$\gamma_1 \le (1 - \alpha_n) \le \gamma_2, \quad \forall n \ge 1.$$

Then the implicit iterative sequence $\{x_n\}$ defined by (1.1) converges weakly to a common fixed point of $\{T_i\}_{i=1}^N$ in K.

Theorem 1.2. ([3, Theorem 3.1, p. 354]) Let K be a nonempty closed convex subset of a Banach space. Let $\{T_i : i \in N\}$ be N asymptotically quasinonexpansive self-mappings of K with $u_{in} \in [0,\infty)$ (i.e., $||T_i^n x - x_i^*|| \le (1 + u_{in}) ||x - x_i^*||$ for all $x \in K$ abd $x_i^* \in F(T)$) such that $\sum_{n=1}^{\infty} u_{in} < \infty$ for all $i \in K$. N and $F = \bigcap F(T_i) \neq \emptyset$. Suppose that $x_0 \in K$ and $\{\alpha_n\} \subset (s, 1-s)$ for some $s \in (0,1)$. Then the implicit iterative sequence $\{x_n\}$ defined by (1.1) converges strongly to a common fixed point in F if and only if $\liminf_{n\to\infty} d(x_n, F) = 0$.

Theorem 1.3. ([3, Theorem 3.3, p. 355]) Let K be a nonempty bounded closed convex subset of a uniformly convex Banach space. Let $\{T_i : i \in N\}$ be N

uniformly L-Lipschitzian asymptotically quasi-nonexpansive self-mappings of K with $u_{in} \in [0, \infty)$ such that $\sum_{n=1}^{\infty} u_{in} < \infty$ for all $i \in N$ and $F = F \bigcap F(T_i) \neq \emptyset$. Suppose that there exists one semicompact member T in $\{T_i : i \in N\}$ and $x_0 \in K$ and $\{\alpha_n\} \subset (s, 1-s)$ for some $s \in (0,1)$. Then the implicit iterative sequence $\{x_n\}$ defined by (1.1) converges strongly to a common fixed point in F.

2. Main Results

Now, we are ready to give our main result in this paper.

Theorem 2.1. Let E be a real uniformly convex Banach space with a Fréchet differentiable norm. Let K be a closed convex subset of E and $\{T_i\}_{i=1}^N$ be a finite family of uniformly Lipschitzian strong successively Φ -pseudocontractive self-mappings of K such that $F = \bigcap_{i=1}^N F(T_i) \neq \emptyset$. Let $\{x_n\}$ be a sequence in K defined by

$$x_n = \alpha_n x_{n-1} + (1 - \alpha_n) T_{i(n)}^{k(n)} x_n, \quad n \ge 1,$$

where n = (k(n) - 1)N + i(n). If $\{\alpha_n\}$ is chosen so that $\alpha_n \in (0, 1)$ with $\limsup_{n \to \infty} \alpha_n < 1$, then the sequence $\{x_n\}$ converges weakly to a common fixed point of the family $\{T_i\}_{i=1}^N$.

Proof. For all $p \in F$, $\lim_{n\to\infty} ||x_n - p||$ exists. Obverse that

$$\|x_{n} - p\|^{2} = \alpha_{n} \langle x_{n-1} - p, j(x_{n} - p) \rangle + (1 - \alpha_{n}) \langle T_{i(n)}^{k(n)} x_{n} - p, j(x_{n} - p) \rangle$$

$$\leq \alpha_{n} \|x_{n-1} - p\| \|x_{n} - p\| + (1 - \alpha_{n}) [\|x_{n} - p\|^{2} - \Phi(\|x_{n} - p\|)]$$

$$\leq \alpha_{n} \|x_{n-1} - p\| \|x_{n} - p\| + (1 - \alpha_{n}) \|x_{n} - p\|^{2},$$

which implies that $||x_n - p|| \le ||x_{n-1} - p||$ and so $\lim_{n\to\infty} ||x_n - p||$ exist. Thus we can assume that $\lim_{n\to\infty} ||x_n - p|| = d$ where $d \ge 0$ is some real number. Since $\{||x_n - p||\}$ is a convergent sequence and so $\{x_n\}$ is a bounded sequence in K.

$$\begin{aligned} \|x_n - p\| &\leq \left\| x_n - p + \frac{1 - \alpha_n}{2\alpha_n} (x_n - T_{i(n)}^{k(n)} x_n) \right\| \\ &= \left\| x_n - p + \frac{1 - \alpha_n}{2} (x_{n-1} - T_{i(n)}^{k(n)} x_n) \right\| \\ &= \left\| \frac{x_{n-1} + x_n}{2} - p \right\| \\ &= \left\| \frac{1}{2} (x_{n-1} - p) + \frac{1}{2} (x_n - p) \right\| \\ &= \left\| x_{n-1} - p \right\| \left\| \frac{1}{2} + \frac{1}{2} \frac{x_n - p}{\|(x_{n-1} - p)\|} \right\| \\ &\leq \|x_{n-1} - p\| \left[1 - \delta \left(\frac{\|x_n - x_{n-1}\|}{\|x_{n-1} - p\|} \right) \right], \end{aligned}$$

which implies that $||x_{n-1} - p|| \delta(\frac{||x_n - x_{n-1}||}{||x_{n-1} - p||}) \leq ||x_{n-1} - p|| - ||x_n - p||$ and hence $x_n - x_{n-1} \to 0$.

Again, since $x_n - x_{n-1} \to 0$, we have $T_{i(n)}^{k(n)} x_n - x_{n-1} \to 0$ and so

$$x_n - T_{i(n)}^{k(n)} x_n \to 0$$

and

$$x_n - x_{n+j} \to 0, \quad \forall j = 1, 2, \cdots .N$$

For any positive interger $n \ge N$, it can be written as n = i(n) (modN), where n = (k(n)-1)N+i(n) for $i(n) \in \{1, 2, \dots, N\}$. Letting $\sigma_n = \left\|T_{i(n)}^{k(n)}x_n - x_{n-1}\right\|$. Then we have

$$\begin{aligned} \|x_{n-1} - T_n x_n\| &\leq \left\| x_{n-1} - T_{i(n)}^{k(n)} x_n \right\| + \left\| T_{i(n)}^{k(n)} x_n - T_n x_n \right\| \\ &= \sigma_n + \left\| T_{i(n)}^{k(n)} x_n - T_{i(n)} x_n \right\| \\ &\leq \sigma_n + L \left\| T_{i(n)}^{k(n)-1} x_n - x_n \right\| \\ &\leq \sigma_n + L \left\{ \left\| T_{i(n)}^{k(n)-1} x_n - T_{n-N}^{k(n)-1} x_{n-N} \right\| \\ &+ \left\| T_{n-N}^{k(n)-1} x_{n-N} - x_{(n-N)-1} \right\| + \left\| x_{(n-N)-1} - x_n \right\| \right\}. \end{aligned}$$

Since, for each n > N, n = (n - N)(modN) and n = (k(n) - 1)N + i(n), we have

$$n - N = ((k(n) - 1) - 1)N + i(n) = (k(n - N) - 1)N + i(n - N),$$

i.e.,

$$k(n - N) = k(n) - 1, \quad i(n - N) = i(n).$$

Therefore, we have

$$\left\| T_{i(n)}^{k(n)-1} x_n - T_{n-N}^{k(n)-1} x_{n-N} \right\|$$

= $\left\| T_{i(n)}^{k(n)-1} x_n - T_{i(n)}^{k(n)-1} x_{n-N} \right\| \le L \|x_n - x_{n-N}\|$

and

$$\left\|T_{n-N}^{k(n)-1}x_{n-N} - x_{(n-N)-1}\right\| = \left\|T_{i(n-N)}^{k(n-N)}x_{n-N} - x_{(n-N)-1}\right\| = \sigma_{n-N}$$

Thus we have

$$||x_{n-1} - T_n x_n|| \le \sigma_n + L^2 ||x_n - x_{n-N}|| + L\sigma_{n-N} + L ||x_{n-N-1} - x_n||$$

d so

and so

$$\lim_{n \to \infty} \|x_{n-1} - T_n x_n\| = 0.$$

It follows that

$$\lim_{n \to \infty} \|x_n - T_n x_n\| = 0.$$

108

Consequently, for each $j = 1, 2, \cdots, N$,

$$\begin{aligned} \|x_n - T_{n+j}x_n\| \\ &\leq \|x_n - x_{n+j}\| + \|x_{n+j} - T_{n+j}x_{n+j}\| + \|T_{n+j}x_{n+j} - T_{n+j}x_n\| \\ &\leq (1+L) \|x_n - x_{n+i}\| + \|x_{n+i} - T_{n+i}x_{n+i}\| \to 0 \quad (n \to \infty), \end{aligned}$$

which implies that the sequence

$$\bigcup_{j=1}^{N} \{ \|x_n - T_{n+j}x_n\| \} \to 0 \quad (n \to \infty).$$

Since $\{\|x_n - T_l x_n\|\}$ is a subsequence of $\bigcup_{j=1}^N \{\|x_n - T_{n+j} x_n\|\}$ for each $l = 1, 2, \dots, N$, we have

$$\lim_{n \to \infty} \|x_n - T_l x_n\| = 0.$$

Since E is uniformly convex, every bounded subset of E is weakly compact. Since $\{x_n\}$ is a bounded sequence in K, there exists a subsequence $\{x_{n_k}\} \subset \{x_n\}$ such that $\{x_{n_k}\}$ converges weakly to $q \in K$. Hence we have

$$\lim_{n_k \to \infty} \|x_{n_k} - T_l x_{n_k}\| = 0, \quad \forall l = 1, 2, \cdots, N.$$

By Tool 1, we have that $(I - T_l)q = 0$, i.e., $q \in F(T_l)$. By the arbitrariness of $l \in \{1, 2, \dots, N\}$, we know that $q \in F = \bigcap_{l=1}^N F(T_l)$.

Next, we prove that $\{x_n\}$ converges weakly to q. Suppose the contrary, then there exists some subsequence $\{x_{n_j}\} \subset \{x_n\}$ such that $\{x_{n_j}\}$ converges weakly to $q_1 \in K$ and $q_1 \neq q$. Then, by the same method as given above, we can also prove that $q_1 \in F = \bigcap_{l=1}^N F(T_l)$. Taking p = q and $p = q_1$. Then, by the same method as given above, two limits exist, i.e., $\lim_{n\to\infty} ||x_{n_k} - q|| = d_1$ and $\lim_{n\to\infty} ||x_{n_k} - q_1|| = d_2$, where d_1 and d_2 are two nonnegative numbers. By virtue of Opial's condition of E, we have

$$d_{1} = \limsup_{n \to \infty} \|x_{n_{k}} - q\| < \limsup_{n_{k} \to \infty} \|x_{n_{k}} - q_{1}\|$$
$$= \limsup_{n_{j} \to \infty} \|x_{n_{j}} - q_{1}\|$$
$$< \limsup_{n_{j} \to \infty} \|x_{n_{j}} - q\|$$
$$= d_{1},$$

which is a contradiction. Hence $q = q_1$, This imply that $\{x_n\}$ converges weakly to q. This completes the proof.

Remark 3.1. Theorem 2.1 extends and improves the corresponding results (Theorems 1.1~1.3) of Chang [1] and Osilike [4] in several ways.

109

RUDONG CHEN AND QIAN MIAO

References

- S. S. Chang, On the convergence of implicit iteration process with error for a finite family of asymptotically nonexpansive mappings, J. Math. Anal. Appl. 313 (2006), 273–283.
- [2] N. Shahzad, Strong convergence of an implicit iteration process for a finite family of generalized asymptotically quasi-nonexpansive maps, Appl. Math. Comput. 189(2) (2007), 1058–1065.
- [3] Z. H. Sun, Strong convergence of an implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl. 286 (2003), 351– 358.
- [4] M. O. Osilike, Implicit iteration process for common fixed points of a finite finite family of strictly pseudocontractive maps, J. Math. Anal. Appl. 294 (2004), 73–81.

RUDONG CHEN: DEPARTMENT OF MATHEMATICS, TIANJIN POLYTECHNIC UNIVERSITY, TIANJIN 300160, PEOPLE'S REPUBLIC OF CHINA *E-mail address*: chenrd@tjpu.edu.cn

Qian Miao: Department of Mathematics, Tianjin Polytechnic University, Tianjin 300160, People's Republic of China

E-mail address: miaoqian1120@yahoo.com.cn