STRONG CONVERGENCE OF AN IMPLICIT ITERATION PROCESS FOR A FINITE FAMILY OF STRONG SUCCESSIVELY Φ-PSEUDOCONTRACTIVE MAPS

Rudong Chen and Qian Miao

Abstract

The aim of this paper is to prove convergence of implicit iteration process to a common fixed point for a finite family of strong successive Φ-pseudocontractive mappings. The results presented in this paper extend and improve the corresponding results of S. S. Chang [On the convergence of implicit iteration process with error for a finite family of asymptotically nonexpansive mappings, J. Math. Anal. Appl. 313 (2006), 273-283], M. O. Osilike [Implicit iteration process for common fixed points of a finite finite family of strictly pseudocontractive maps, Appl. Math. Comput. 189(2) (2007), 1058-1065].

1. Introduction

Let K be a nonempty closed convex subset of $E, x_{0} \in K$ be any given point and $\left\{T_{i}\right\}_{i=1}^{N}: K \rightarrow K$ be N mappings. Let $\left\{\alpha_{n}\right\}$ be a sequence in $[0,1]$, with $\limsup _{n \rightarrow \infty} \alpha_{n}<1, x_{n}$ defined by

$$
\left\{\begin{array}{l}
x_{1}=\alpha_{1} x_{0}+\left(1-\alpha_{1}\right) T_{1} x_{1} \tag{1.1}\\
x_{2}=\alpha_{2} x_{1}+\left(1-\alpha_{2}\right) T_{2} x_{2} \\
\cdots \\
x_{N}=\alpha_{N} x_{N-1}+\left(1-\alpha_{N}\right) T_{N} x_{N} \\
x_{N+1}=\alpha_{N+1} x_{N}+\left(1-\alpha_{N}\right) T_{1}^{2} x_{N} \\
\cdots \\
x_{2 N+1}=\alpha_{2 N+1} x_{2 N}+\left(1-\alpha_{2 N+1}\right) T_{1}^{3} x_{2 N+1}, \\
\cdots
\end{array}\right.
$$

A family $\left\{T_{i}\right\}_{i=1}^{N}$ is called uniformly Lipschitzian with a Lipschitzian constant $L \geq 1$, i.e., there exists a constant $L \geq 1$ such that

$$
\left\|T_{i}^{n}-T_{i}^{n}\right\| \leq L\|x-y\|, \quad \forall n \geq 1, x, y \in K, i=1, \cdots, N .
$$

Received September 15, 2007.
Key words and phrases. Fixed point, pseudo-contractions.
This work is supported by the National Science Foundation of China, Grant 10771050.

Definition 1.1. A family $\left\{T_{i}\right\}_{i=1}^{N}$ is called generalized strongly successively Φ-pseudocontractive if, for all $x, y \in E$, there exist $j(x-y) \in J(x-y)$ and a strictly increasing function $\Phi:[0, \infty) \rightarrow[0, \infty)$ with $\Phi(0)=0$ such that

$$
\left\langle T^{n} x-T^{n} y, j(x-y)\right\rangle \leq\|x-y\|^{2}-\Phi(\|x-y\|) .
$$

Definition 1.2. A Banach space E is said to satisfy Opial's condition if, for any $\left\{x_{n}\right\} \subset E$ with $x_{n} \rightharpoonup x$, the following inequality holds:

$$
\liminf _{n \rightarrow \infty}\left\|x_{n}-x\right\|<\liminf _{n \rightarrow \infty}\left\|x_{n}-y\right\|, \quad \forall y \in E(y \neq x)
$$

Tool 1: Let E be a real reflexive Banach space which satisfies Opial's condition, K be a nonempty closed convex subset of E and $T: K \rightarrow K$ be an continuous pseudocontrative mapping, Then $I-T$ is demiclosed at zero.

Tool 2: Let E be a uniformly convex Banach space with the modulus of uniform convexity δ_{E}. Then $\delta_{E}:[0,2] \rightarrow[0,1]$ is continuous increasing, $\delta_{E}(0)=0$ and $\delta_{E}(t)>0$ for all $t>0$, while

$$
\|c u+(1-c) v\| \leq 1-2 \min \{c, 1-c\} \delta_{E}(\|u-v\|)
$$

whenever $0 \leq c \leq 1$ and $\|u\|,\|v\| \leq 1$.
Thereom 1.1. ([1, Theorem 1, p. 276]) Let E be a real uniformly convex Banach space satisfying Opial's condition, K be a nonempty closed convex subset of E with $K+K \subset K,\left\{T_{i}\right\}_{i=1}^{N}: K \rightarrow K$ be asymptotically nonexpansive mappings with $F=\bigcap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$. Let $\left\{u_{n}\right\}$ be a bounded sequence in K, $\left\{\alpha_{n}\right\}$ be a sequences in $[0,1],\left\{h_{n}\right\}$ be a sequence defined by

$$
\left\|T_{i}^{n} x-T_{i}^{n} y\right\| \leq h_{n}\|x-y\|, \quad x, y \in K
$$

and $L=\sup _{n \geq 1} h_{n} \geq 1$ satisfying the following conditions:
(a) $\sum_{n=1}^{\infty}\left\|u_{n}\right\|<\infty$;
(b) $\sum_{n=1}^{\infty}\left(h_{n}-1\right)<\infty$;
(c) there exist constants $\gamma_{1}, \gamma_{2} \in(0,1)$ such that

$$
\gamma_{1} \leq\left(1-\alpha_{n}\right) \leq \gamma_{2}, \quad \forall n \geq 1
$$

Then the implicit iterative sequence $\left\{x_{n}\right\}$ defined by (1.1) converges weakly to a common fixed point of $\left\{T_{i}\right\}_{i=1}^{N}$ in K.

Theorem 1.2. ([3, Theorem 3.1, p. 354]) Let K be a nonempty closed convex subset of a Banach space. Let $\left\{T_{i}: i \in N\right\}$ be N asymptotically quasinonexpansive self-mappings of K with $u_{i n} \in[0, \infty)$ (i.e., $\left\|T_{i}^{n} x-x_{i}^{*}\right\| \leq(1+$ $\left.u_{i n}\right)\left\|x-x_{i}^{*}\right\|$ for all $x \in K$ abd $\left.x_{i}^{*} \in F(T)\right)$ such that $\sum_{n=1}^{\infty} u_{i n}<\infty$ for all $i \in$ N and $F=\bigcap F\left(T_{i}\right) \neq \emptyset$. Suppose that $x_{0} \in \operatorname{Kand}\left\{\alpha_{n}\right\} \subset(s, 1-s)$ for some $s \in(0,1)$. Then the implicit iterative sequence $\left\{x_{n}\right\}$ defined by (1.1) converges strongly to a common fixed point in F if and only if $\liminf _{n \rightarrow \infty} d\left(x_{n}, F\right)=0$.
Theorem 1.3. ([3, Theorem 3.3, p. 355]) Let K be a nonempty bounded closed convex subset of a uniformly convex Banach space. Let $\left\{T_{i}: i \in N\right\}$ be N
uniformly L-Lipschitzian asymptotically quasi-nonexpansive self-mappings of K with $u_{i n} \in[0, \infty)$ such that $\sum_{n=1}^{\infty} u_{i n}<\infty$ for all $i \in N$ and $F=F \bigcap F\left(T_{i}\right) \neq$ \emptyset. Suppose that there exists one semicompact member T in $\left\{T_{i}: i \in N\right\}$ and $x_{0} \in K$ and $\left\{\alpha_{n}\right\} \subset(s, 1-s)$ for some $s \in(0,1)$. Then the implicit iterative sequence $\left\{x_{n}\right\}$ defined by (1.1) converges strongly to a common fixed point in F.

2. Main Results

Now, we are ready to give our main result in this paper.
Theorem 2.1. Let E be a real uniformly convex Banach space with a Fréchet differentiable norm. Let K be a closed convex subset of E and $\left\{T_{i}\right\}_{i=1}^{N}$ be a finite family of uniformly Lipschitzian strong successively Φ-pseudocontractive self-mappings of K such that $F=\cap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence in K defined by

$$
x_{n}=\alpha_{n} x_{n-1}+\left(1-\alpha_{n}\right) T_{i(n)}^{k(n)} x_{n}, \quad n \geq 1
$$

where $n=(k(n)-1) N+i(n)$. If $\left\{\alpha_{n}\right\}$ is chosen so that $\alpha_{n} \in(0,1)$ with $\limsup _{n \rightarrow \infty} \alpha_{n}<1$, then the sequence $\left\{x_{n}\right\}$ converges weakly to a common fixed point of the family $\left\{T_{i}\right\}_{i=1}^{N}$.
Proof. For all $p \in F, \lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists. Obverse that

$$
\begin{aligned}
\left\|x_{n}-p\right\|^{2} & =\alpha_{n}\left\langle x_{n-1}-p, j\left(x_{n}-p\right)\right\rangle+\left(1-\alpha_{n}\right)\left\langle T_{i(n)}^{k(n)} x_{n}-p, j\left(x_{n}-p\right)\right\rangle \\
& \leq \alpha_{n}\left\|x_{n-1}-p\right\|\left\|x_{n}-p\right\|+\left(1-\alpha_{n}\right)\left[\left\|x_{n}-p\right\|^{2}-\Phi\left(\left\|x_{n}-p\right\|\right)\right] \\
& \leq \alpha_{n}\left\|x_{n-1}-p\right\|\left\|x_{n}-p\right\|+\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|^{2}
\end{aligned}
$$

which implies that $\left\|x_{n}-p\right\| \leq\left\|x_{n-1}-p\right\|$ and so $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exist. Thus we can assume that $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|=d$ where $d \geq 0$ is some real number. Since $\left\{\left\|x_{n}-p\right\|\right\}$ is a convergent sequence and so $\left\{x_{n}\right\}$ is a bounded sequence in K.

$$
\begin{aligned}
\left\|x_{n}-p\right\| & \leq\left\|x_{n}-p+\frac{1-\alpha_{n}}{2 \alpha_{n}}\left(x_{n}-T_{i(n)}^{k(n)} x_{n}\right)\right\| \\
& =\left\|x_{n}-p+\frac{1-\alpha_{n}}{2}\left(x_{n-1}-T_{i(n)}^{k(n)} x_{n}\right)\right\| \\
& =\left\|\frac{x_{n-1}+x_{n}}{2}-p\right\| \\
& =\left\|\frac{1}{2}\left(x_{n-1}-p\right)+\frac{1}{2}\left(x_{n}-p\right)\right\| \\
& =\left\|x_{n-1}-p\right\|\left\|\frac{1}{2}+\frac{1}{2} \frac{x_{n}-p}{\left\|\left(x_{n-1}-p\right)\right\|}\right\| \\
& \leq\left\|x_{n-1}-p\right\|\left[1-\delta\left(\frac{\left\|x_{n}-x_{n-1}\right\|}{\left\|x_{n-1}-p\right\|}\right)\right]
\end{aligned}
$$

which implies that $\left\|x_{n-1}-p\right\| \delta\left(\frac{\left\|x_{n}-x_{n-1}\right\|}{\left\|x_{n-1}-p\right\|}\right) \leq\left\|x_{n-1}-p\right\|-\left\|x_{n}-p\right\|$ and hence $x_{n}-x_{n-1} \rightarrow 0$.

Again, since $x_{n}-x_{n-1} \rightarrow 0$, we have $T_{i(n)}^{k(n)} x_{n}-x_{n-1} \rightarrow 0$ and so

$$
x_{n}-T_{i(n)}^{k(n)} x_{n} \rightarrow 0
$$

and

$$
x_{n}-x_{n+j} \rightarrow 0, \quad \forall j=1,2, \cdots . N
$$

For any positive interger $n \geq N$, it can be written as $n=i(n)(\bmod N)$, where $n=(k(n)-1) N+i(n)$ for $i(n) \in\{1,2, \cdots, N\}$. Letting $\sigma_{n}=\left\|T_{i(n)}^{k(n)} x_{n}-x_{n-1}\right\|$. Then we have

$$
\begin{aligned}
\left\|x_{n-1}-T_{n} x_{n}\right\| \leq & \left\|x_{n-1}-T_{i(n)}^{k(n)} x_{n}\right\|+\left\|T_{i(n)}^{k(n)} x_{n}-T_{n} x_{n}\right\| \\
= & \sigma_{n}+\left\|T_{i(n)}^{k(n)} x_{n}-T_{i(n)} x_{n}\right\| \\
\leq & \sigma_{n}+L\left\|T_{i(n)-1}^{k(n)-1} x_{n}-x_{n}\right\| \\
\leq & \sigma_{n}+L\left\{\left\|T_{i(n)}^{k(n)-1} x_{n}-T_{n-N}^{k(n)-1} x_{n-N}\right\|\right. \\
& \left.+\left\|T_{n-N}^{k(n)-1} x_{n-N}-x_{(n-N)-1}\right\|+\left\|x_{(n-N)-1}-x_{n}\right\|\right\} .
\end{aligned}
$$

Since, for each $n>N, n=(n-N)(\bmod N)$ and $n=(k(n)-1) N+i(n)$, we have

$$
n-N=((k(n)-1)-1) N+i(n)=(k(n-N)-1) N+i(n-N),
$$

i.e.,

$$
k(n-N)=k(n)-1, \quad i(n-N)=i(n) .
$$

Therefore, we have

$$
\begin{aligned}
& \left\|T_{i(n)}^{k(n)-1} x_{n}-T_{n-N}^{k(n)-1} x_{n-N}\right\| \\
& =\left\|T_{i(n)}^{k(n)-1} x_{n}-T_{i(n)}^{k(n)-1} x_{n-N}\right\| \leq L\left\|x_{n}-x_{n-N}\right\|
\end{aligned}
$$

and

$$
\left\|T_{n-N}^{k(n)-1} x_{n-N}-x_{(n-N)-1}\right\|=\left\|T_{i(n-N)}^{k(n-N)} x_{n-N}-x_{(n-N)-1}\right\|=\sigma_{n-N}
$$

Thus we have

$$
\left\|x_{n-1}-T_{n} x_{n}\right\| \leq \sigma_{n}+L^{2}\left\|x_{n}-x_{n-N}\right\|+L \sigma_{n-N}+L\left\|x_{n-N-1}-x_{n}\right\|
$$

and so

$$
\lim _{n \rightarrow \infty}\left\|x_{n-1}-T_{n} x_{n}\right\|=0
$$

It follows that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-T_{n} x_{n}\right\|=0
$$

Consequently, for each $j=1,2, \cdots, N$,

$$
\begin{aligned}
& \left\|x_{n}-T_{n+j} x_{n}\right\| \\
& \leq\left\|x_{n}-x_{n+j}\right\|+\left\|x_{n+j}-T_{n+j} x_{n+j}\right\|+\left\|T_{n+j} x_{n+j}-T_{n+j} x_{n}\right\| \\
& \leq(1+L)\left\|x_{n}-x_{n+i}\right\|+\left\|x_{n+i}-T_{n+i} x_{n+i}\right\| \rightarrow 0 \quad(n \rightarrow \infty)
\end{aligned}
$$

which implies that the sequence

$$
\bigcup_{j=1}^{N}\left\{\left\|x_{n}-T_{n+j} x_{n}\right\|\right\} \rightarrow 0 \quad(n \rightarrow \infty)
$$

Since $\left\{\left\|x_{n}-T_{l} x_{n}\right\|\right\}$ is a subsequence of $\bigcup_{j=1}^{N}\left\{\left\|x_{n}-T_{n+j} x_{n}\right\|\right\}$ for each $l=$ $1,2, \cdots, N$, we have

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-T_{l} x_{n}\right\|=0
$$

Since E is uniformly convex, every bounded subset of E is weakly compact. Since $\left\{x_{n}\right\}$ is a bounded sequence in K, there exists a subsequence $\left\{x_{n_{k}}\right\} \subset$ $\left\{x_{n}\right\}$ such that $\left\{x_{n_{k}}\right\}$ converges weakly to $q \in K$. Hence we have

$$
\lim _{n_{k} \rightarrow \infty}\left\|x_{n_{k}}-T_{l} x_{n_{k}}\right\|=0, \quad \forall l=1,2, \cdots, N
$$

By Tool 1, we have that $\left(I-T_{l}\right) q=0$, i.e., $q \in F\left(T_{l}\right)$. By the arbitrariness of $l \in\{1,2, \cdots, N\}$, we know that $q \in F=\bigcap_{l=1}^{N} F\left(T_{l}\right)$.

Next, we prove that $\left\{x_{n}\right\}$ converges weakly to q. Suppose the contrary, then there exists some subsequence $\left\{x_{n_{j}}\right\} \subset\left\{x_{n}\right\}$ such that $\left\{x_{n_{j}}\right\}$ converges weakly to $q_{1} \in K$ and $q_{1} \neq q$. Then, by the same method as given above, we can also prove that $q_{1} \in F=\bigcap_{l=1}^{N} F\left(T_{l}\right)$. Taking $p=q$ and $p=q_{1}$. Then, by the same method as given above, two limits exist, i.e., $\lim _{n \rightarrow \infty}\left\|x_{n_{k}}-q\right\|=d_{1}$ and $\lim _{n \rightarrow \infty}\left\|x_{n_{k}}-q_{1}\right\|=d_{2}$, where d_{1} and d_{2} are two nonnegative numbers. By virtue of Opial's condition of E, we have

$$
\begin{aligned}
d_{1}=\limsup _{n \rightarrow \infty}\left\|x_{n_{k}}-q\right\| & <\limsup _{n_{k} \rightarrow \infty}\left\|x_{n_{k}}-q_{1}\right\| \\
& =\limsup _{n_{j} \rightarrow \infty}\left\|x_{n_{j}}-q_{1}\right\| \\
& <\limsup _{n_{j} \rightarrow \infty}\left\|x_{n_{j}}-q\right\| \\
& =d_{1}
\end{aligned}
$$

which is a contradiction. Hence $q=q_{1}$, This imply that $\left\{x_{n}\right\}$ converges weakly to q. This completes the proof.

Remark 3.1. Theorem 2.1 extends and improves the corresponding results (Theorems 1.1~1.3) of Chang [1] and Osilike [4] in several ways.

References

[1] S. S. Chang, On the convergence of implicit iteration process with error for a finite family of asymptotically nonexpansive mappings, J. Math. Anal. Appl. 313 (2006), 273-283.
[2] N. Shahzad, Strong convergence of an implicit iteration process for a finite family of generalized asymptotically quasi-nonexpansive maps, Appl. Math. Comput. 189(2) (2007), 1058-1065.
[3] Z. H. Sun, Strong convergence of an implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl. 286 (2003), 351358.
[4] M. O. Osilike, Implicit iteration process for common fixed points of a finite finite family of strictly pseudocontractive maps, J. Math. Anal. Appl. 294 (2004), 73-81.

Rudong Chen: Department of Mathematics, Tianjin Polytechnic University, Tianjin 300160, People's Republic of China

E-mail address: chenrd@tjpu.edu.cn
Qian Miao: Department of Mathematics, Tianjin Polytechnic University, Tianjin 300160, People's Republic of China

E-mail address: miaoqian1120@yahoo.com.cn

