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FIXED POINT THEORY FOR PERMISSIBLE MAPS VIA
INDEX THEORY

Mircea Balaj, Yeol Je Cho and Donal O’Regan

Abstract. New fixed point theorems for permissible maps between Fréchet
spaces are presented. The proof relies on index theory developed by
Dzedzej and on viewing a Fréchet space as the projective limit of a se-

quence of Banach spaces.

1. Introduction.

This paper presents new fixed point theorems for permissible compact maps
(or more generally permissible maps which are of compact attraction) between
Fréchet spaces. In the literature [1, 6], one usually assumes the map F is
defined on a subset X of a Fréchet space E and its restriction (again called
F ) is well defined on Xn (see Section 2). In general of course for Volterra
operators the restriction is always defined on Xn and in most applications it
is in fact defined on Xn and usually even on En (see Section 2).

In this paper we make use of the fact that the restriction is well defined on
Xn and we only assume it admits an extension (satisfying certain properties)
on Xn. It is also worth remarking here that one could write the results in
this paper for compositions of maps with proximally ∞-connected values using
the index theory in [2] (this has the advantage that no knowlege of homology
theory is needed to construct the index).

Existence in Section 2 will rely on index theory and so we begin by discussing
the maps we will consider in this paper.

Let X and Y be Hausdorff topological spaces. We say F : X → 2Y (here
2Y denotes the family of nonempty subsets of Y ) is locally compact if for
every x ∈ X there exists a neighborhood U of x such that the restriction
F |U : U → 2Y is compact. Now, if F : X → 2X , we let Fn(x) = F (Fn−1(x)).

Definition 1.1. Let F : X → 2X be upper semicontinuous, x ∈ X and
A ⊆ X. We say that A attracts x if, for each neighborhood U of A, there
is a n ∈ {1, 2, · · · } with Fn(x) ⊆ U . Also, we say that A is an attractor for
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F if it attracts all points in X. Now, we say that the map F is of compact
attraction if it has a compact attractor and is locally compact.

Definition 1.2. A multivalued map F : X → 2Y is in the class Am(X, Y ) if
(1) F is continuous,
(2) for each x ∈ X, the set F (x) consists of one or m acyclic components;

here m is a positive integer.

Definition 1.3. A decomposition (F1, · · · , Fn) of a multivalued map F :
X → 2Y is a sequence of maps

X = X0
F1→ X1

F2→ X2
F3→ · · · Fn−1→ Xn−1

Fn→ Xn = Y,

where Fi ∈ Ami(Xi−1, Xi), F = Fn ◦ · · · ◦ F1. One can say that the map F
is determined by the decomposition (F1, · · · , Fn). The number n is said to
be the length of the decomposition (F1, · · · , Fn). We will denote the class of
decompositions by D(X, Y ).

Definition 1.4. An upper semicontinuous map F : X → 2Y is said to be
permissible provided it admits a selector G : X → 2Y which is determined by
a decomposition (G1, · · · , Gn) ∈ D(X,Y ). We denote the class of permissible
maps from X into Y by P(X, Y ).

Let X be a closed convex subset of a normed space E and let F : X → 2X

be a permissible map which is of compact attraction. Let U be an open subset
of X with Fix F ∩ ∂ U = ∅. Then the index i(X, F,U) is well defined (see [3,
p. 42] or see [4, Sections 50-53]) and has the usual properties ([3, p. 43]).

Let (X, d) be a metric space and S a nonempty subset of X. For x ∈ X
let d(x, S) = infy∈S d(x, y). Also, diamS = sup{d(x, y) : x, y ∈ S}. We let
B(x, r) denote the open ball in X centered at x of radius r and by B(S, r)
we denote ∪x∈S B(x, r). For two nonempty subsets S1 and S2 of X, we define
the generalized Hausdorff distance H to be

H(S1, S2) = inf{ϵ > 0 : S1 ⊆ B(S2, ϵ), S2 ⊆ B(S1, ϵ)}.

Now, suppose G : S → 2X ; here 2X denotes the family of nonempty subsets
of X. Then G is said to be hemicompact if each sequence {xn}n∈N in S has
a convergent subsequence whenever d(xn, G (xn)) → 0 as n → ∞.

Now, let I be a directed set with order ≤ and let {Eα}α∈I be a family of
locally convex spaces. For each α ∈ I, β ∈ I for which α ≤ β, let πα,β : Eβ →
Eα be a continuous map. Then the set{

x = (xα) ∈
∏
α∈I

Eα : xα = πα,β(xβ) ∀α, β ∈ I, α ≤ β

}
is a closed subset of

∏
α∈I Eα and is called the projective limit of {Eα}α∈I and

is denoted by lim← Eα (or lim← {Eα, πα,β} or the generalized intersection [5,
p. 439] ∩α∈I Eα.)
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2. Fixed point theory in Fréchet spaces

Let E = (E, {| · |n}n∈N ) be a Fréchet space with the topology generated by
a family of seminorms {| · |n : n ∈ N}; here N = {1, 2, · · · }. We assume that
the family of seminorms satisfies

(2.1) |x|1 ≤ |x|2 ≤ |x|3 ≤ · · · for every x ∈ E.

A subset X of E is said to be bounded if, for every n ∈ N, there exists
rn > 0 such that |x|n ≤ rn for all x ∈ X. For r > 0 and x ∈ E, we denote
B(x, r) = {y ∈ E : |x − y|n ≤ r, ∀n ∈ N}. To E we associate a sequence of
Banach spaces {(En, | · |n)} described as follows. For every n ∈ N, we consider
the equivalence relation ∼n defined by

(2.2) x ∼n y if and onnly if |x − y|n = 0.

We denote by En = (E /∼n, | · |n) the quotient space and by (En, | · |n) the
completion of En with respect to | · |n (the norm on En induced by | · |n
and its extension to En are still denoted by | · |n). This construction defines a
continuous map µn : E → En. Now since (2.1) is satisfied the seminorm | · |n
induces a seminorm on Em for every m ≥ n (again, this seminorm is denoted
by | · |n). Also, (2.2) defines an equivalence relation on Em from which we
obtain a continuous map µn,m : Em → En since Em /∼n can be regarded as
a subset of En. Now, µn,m µm,k = µn,k if n ≤ m ≤ k and µn = µn,m µm if
n ≤ m. We now assume the following condition holds:

(2.3)

{
for each n ∈ N, there exists a Banach space (En, | · |n)
and an isomorphism (between normed spaces) jn : En → En.

Remark 2.1. (1) For convenience the norm on En is denoted by | · |n.
(2) In our applications En = En for each n ∈ N .
(3) Note that, if x ∈ En (or En), then x ∈ E. However, if x ∈ En, then

x is not necessaily in E and in fact En is easier to use in applications (even
though En is isomorphic to En). For example, if E = C[0,∞), then En

consists of the class of functions in E which coincide on the interval [0, n] and
En = C[0, n].

Finally, we assume

(2.4)

{
E1 ⊇ E2 ⊇ · · · and, for each n ∈ N,

|jn µn,n+1 j−1
n+1 x|n ≤ |x|n+1 for all x ∈ En+1

(here we use the notation from [5], i.e., decreasing in the generalized sense).
Let lim← En (or ∩∞

1 En where ∩∞
1 is the generalized intersection [5]) denote

the projective limit of {En}n∈N (note πn,m = jn µn,m j−1
m : Em → En for

m ≥ n) and note lim← En
∼= E, so, for convenience, we write E = lim← En.

For each X ⊆ E and each n ∈ N, we set Xn = jn µn(X) and we let
Xn, intXn and ∂Xn denote, respectively, the closure, the interior and the
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boundary of Xn with respect to | · |n in En. Also, the pseudo-interior of X
is defined by

pseudo − int (X) = {x ∈ X : jn µn(x) ∈ Xn \ ∂Xn for every n ∈ N}.
The set X is said to be pseudo-open if X = pseudo− int (X). For r > 0 and
x ∈ En, we denote Bn(x, r) = {y ∈ En : |x − y|n ≤ r}.

Let M ⊆ E and consider the map F : M → 2E . Assume that, for each n ∈
N and x ∈ M, that jn µn F (x) is closed. Let n ∈ N and Mn = jn µn(M).
Since we only consider Volterra type operators, we assume that

(2.5) if x, y ∈ E with |x − y|n = 0 then Hn(F x, F y) = 0;

here Hn denotes the appropriate generalized Hausdorff distance (alternatively,
we could assume that if jn µn x = jn µn y for all n ∈ N and x, y ∈ M, then
jn µn F x = jn µn F y and of course, here we do not need to assume that
jn µn F (x) is closed for each n ∈ N and x ∈ M). Now, (2.5) guarantees that
we can define (a well defined) Fn on Mn as follows:

For y ∈ Mn, there exists a x ∈ M with y = jn µn(x) and we let

Fn y = jn µn F x

(we could of course call it F y since it is clear in the situation we use it); note
that Fn : Mn → C(En) and note if there exists z ∈ M with y = jn µn(z), then
jn µn F x = jn µn F z from (2.5) (here C(En) denotes the family of nonempty
closed subsets of En). In this paper, we assume Fn will be defined on Mn,
i.e., we assume the Fn described above admits an extension (again we call it
Fn) Fn : Mn → 2En (we will assume certain properties on the extension).

We now show how easily one can extend fixed point theory in Banach spaces
to applicable fixed point theory in Fréchet spaces.

Theorem 2.1. Let E and En be as described above, C a convex subset in
E, U a pseudo-open bounded subset of E, F : Y → 2E with Y ⊆ E and
Cn ⊆ Yn for each n ∈ N . Also, assume, for each n ∈ N and x ∈ Y, that
jn µn F (x) is closed and, in addition, for each n ∈ N , that Fn : Cn → 2En

is as described above. Suppose that the following conditions are satisfied:

(2.6) for each n ∈ N, Fn ∈ P(Cn, Cn) is a compact map,

(2.7)

{
for each n ∈ N, Fn has no fixed points in ∂ Wn; here

Wn = Un ∩ Cn and ∂Wn denotes the boundary of Wn in Cn,

(2.8) for each n ∈ N, i(Cn, Fn,Wn) ̸= {0},

(2.9)

{
for each n ∈ {2, 3, · · · }, if y ∈ Wn solves y ∈ Fn y

in En, then jk µk,n j−1
n (y) ∈ Wk for k ∈ {1, · · · , n − 1}.

Then F has a fixed point in E.
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Remark 2.2. Note in Theorem 2.1 that if x ∈ Cn, then x ∈ Yn and so there
exists a y ∈ Y with x = jn µn (y). Thus Fn (x) = jn µn F (y).

Proof. Fix n ∈ N . We now show

(2.10) Un = int Un and Cn is convex.

We first show Un is a open subset of En, so int Un = Un. To see this, note
Un ⊆ Un \ ∂Un since if y ∈ Un then there exists x ∈ X with y = jnµn(x)
and this together with U = pseudo − int U yields jnµn(x) ∈ Un \ ∂Un, i.e.,
y ∈ Un \ ∂Un. In addition, notice

Un \ ∂Un = (int Un ∪ ∂Un) \ ∂Un = int Un \ ∂Un = int Un

since int Un ∩ ∂Un = ∅. Consequently,

Un ⊆ Un \ ∂Un = int Un, so Un = int Un.

To show the second part of (2.10), let x̂, ŷ ∈ µn(C) and λ ∈ [0, 1]. Then,
for every x ∈ µ−1

n (x̂) and y ∈ µ−1
n (ŷ), we have λx + (1 − λ)y ∈ C since C is

convex and so λx̂ + (1− λ)ŷ = λµn(x) + (1− λ)µn(y). It is easy to check that
λµn(x) + (1 − λ)µn(y) = µn(λx + (1 − λ)y), so, as a result,

λx̂ + (1 − λ)ŷ = µn(λx + (1 − λ)y) ∈ µn(C)

and so µn(C) is convex. Now, since jn is linear, we have Cn = jn(µn(C)) is
convex and as, a result, Cn is convex. Thus (2.10) holds.

Now, (2.8) guarantees that there exists yn ∈ Wn = Un∩Cn with yn ∈ Fn yn

in En. Let’s look at {yn}n∈N . Notice y1 ∈ W1 and j1 µ1,k j−1
k (yk) ∈ W1 for

k ∈ N\{1} from (2.9). Note j1 µ1,n j−1
n (yn) ∈ F1 (j1 µ1,n j−1

n (yn)) in E1; to
see note that, for n ∈ N fixed, there exists x ∈ E with yn = jn µn (x), so
jn µn (x) ∈ Fn (yn) = jn µn F (x) on En, so on E1, we have

j1 µ1,n j−1
n (yn) = j1 µ1,n j−1

n jn µn (x) ∈ j1 µ1,n j−1
n jn µn F (x)

= j1 µ1,n µn F (x) = j1 µ1 F (x) = F1(j1 µ1 (x))

= F1(j1 µ1,n j−1
n jn µn (x)) = F1 (j1 µ1,n j−1

n (yn)).

j1 µ1,n j−1
n (yn) ∈ F1 (j1 µ1,n j−1

n (yn)) in E1, j1 µ1,n j−1
n (yn) ∈ W1 for n ∈ N ,

together with (2.6) implies that there is a subsequence N⋆
1 of N and a z1 ∈

W1 with j1 µ1,n j−1
n (yn) → z1 in E1 as n → ∞ in N⋆

1 and z1 ∈ F1 z1 since
F1 is upper semicontinuous. Also (2.7) implies z1 ∈ W1. Let N1 = N⋆

1 \ {1}.
Now j2 µ2,n j−1

n (yn) ∈ W2 for n ∈ N1 together with (2.6) guarantees that
there exists a subsequence N⋆

2 of N1 and a z2 ∈ W2 with j2 µ2,n j−1
n (yn) →

z2 in E2 as n → ∞ in N⋆
2 and z2 ∈ F2 z2. Also, (2.7) implies z2 ∈ W2. Note

from (2.4) and the uniqueness of limits that j1 µ1,2 j−1
2 z2 = z1 in E1 since

N⋆
2 ⊆ N1 (note j1 µ1,n j−1

n (yn) = j1 µ1,2 j−1
2 j2 µ2,n j−1

n (yn) for n ∈ N⋆
2 ). Let

N2 = N⋆
2 \ {2}. Proceed inductively to obtain subsequences of integers

N⋆
1 ⊇ N⋆

2 ⊇ · · · , N⋆
k ⊆ {k, k + 1, · · · }
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and zk ∈ Wk with jk µk,n j−1
n (yn) → zk in Ek as n → ∞ in N⋆

k and
zk ∈ Fk zk. Also, (2.7) implies zk ∈ Wk. Note jk µk,k+1 j−1

k+1 zk+1 = zk in Ek

for k ∈ {1, 2, · · · }. Also, let Nk = N⋆
k \ {k}.

Fix k ∈ N . Now zk ∈ Fk zk in Ek. Note as well that

zk = jk µk,k+1 j−1
k+1 zk+1 = jk µk,k+1 j−1

k+1 jk+1 µk+1,k+2 j−1
k+2 zk+2

= jk µk,k+2 j−1
k+2 zk+2 = · · · = jk µk,m j−1

m zm = πk,m zm

for every m ≥ k. We can do this for each k ∈ N . As a result y = (zk) ∈
lim← En = E and also note y ∈ Y since zk ∈ Wk ⊆ Ck ⊆ Yk for each k ∈ N .
Thus, for each k ∈ N, we have

jk µk (y) = zk ∈ Fk zk = jk µk F y in Ek

so y ∈ F y in E. ¤
Remark 2.3. We can replace (2.9) in Theorem 2.1 with{

for each n ∈ {2, 3, · · · }, if y ∈ Wn solves y ∈ Fn y

in En, then jk µk,n j−1
n (y) ∈ Wk for k ∈ {1, · · · , n − 1}.

Remark 2.4. In Theorem 2.1, it is possible to replace Cn ⊆ Yn with Cn

a subset of the closure of Yn in En provided Y is a closed subset of E, so
in this case, we could have Y = C if C is closed. To see this note, from
y = (zk) ∈ lim← En = E and πk,m (ym) → zk in Ek as m → ∞, we can
conclude that y ∈ Y = Y (note q ∈ Y if and only if, for every k ∈ N, there
exists (xk,m) ∈ Y , xk,m = πk,n (xn,m) for n ≥ k with xk,m → jk µk (q) in
Ek as m → ∞). Thus zk = jk µk (y) ∈ Yk and so jk µk (y) ∈ jk µk F (y) in
Ek as before.

Remark 2.5. One could write the result in Theorem 2.1 with P replaced by
J(A)c using the index theory from [2] (this has the advantage that no knowlege
of homology theory is needed to construct the index).

Essentially, the same reasoning as in Theorem 2.1 yields the following result
(in addition, here we have the analogue of Remark 2.3 and Remark 2.4).

Theorem 2.2. Let E and En be as described above, C a convex subset in
E, U a pseudo-open bounded subset of E and F : Y → 2E with Y ⊆ E, and
Cn ⊆ Yn for each n ∈ N . Also assume, for each n ∈ N and x ∈ Y, that
jn µn F (x) is closed and, in addition, for each n ∈ N, that Fn : Cn → 2En is
as described above. Suppose that the following condition is satisfied:

(2.11)

{
for each n ∈ N, Fn ∈ P(Cn, Cn) is of
compact attraction and is a hemicompact map.

Also, assume that (2.7), (2.8) and (2.9) hold. Then F has a fixed point in E.
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