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ON CHAOTIC OPERATOR ORDER A ≫ C ≫ B

IN HILBERT SPACES

C.-S. Lin

Abstract. In this paper, we characterize the chaotic operator order A ≫
C ≫ B. Consequently all other possible characterizations follow easily.
Some satellite theorems of the Furuta inequality are naturally given. And

finally, using results of characterizing A ≫ C ≫ B, and by the Douglas’s
majorization and factorization theorem we are able to characterize the
chaotic operator order A ≫ B in terms of operator equalities.

1. Introduction

We shall use the capital letters throughout this paper to denote bounded
linear operators on a Hilbert space and I the identity operator. That T ≥ O
means T is a positive operator and a positive and invertible operator A is
denoted by A > O. For A,B > O, we write log A ≥ log B by A ≫ B in short,
which is a standard chaotic operator order and is weaker than the operator
order A ≥ B. Let us recall the well-known classical Löwner-Heinz inequality as
it is used frequently in this paper: If S ≥ T ≥ O, then Sα ≥ Tα for α ∈ [0, 1].
Essentially, the Löwner-Heinz inequality does not hold in general if α > 1. It
is easily seen that A ≫ B does not imply A ≥ B in general.

The contents of this paper has been arranged as follows. In section 2, we
characterize the chaotic operator order A ≫ C ≫ B due to Theorem FM below
by Fujii et al. [4], and we provide as many equivalent statements as possible. In
section 3, using the same method as in section 2 it follows that all other possible
characterizations of A ≫ C ≫ B are obtained. In section 4, we construct two
formulas, and use them to prove some satellite theorems of Furuta. Finally,
in section 5, due to the Douglas’s theorem [1] we present characterizations of
A ≫ B in terms of operator equalities.

Since we are considering the logarithm of operators, in what follows we
assume that A,B, C,X, Y > O. First we require three known results as follows.

Theorem FC. ([3, 12, Chaotic Furuta inequality]) A ≫ B if and only if
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(a0) Ar ≥ (Ar/2BpAr/2)
r

p+r hollds for all p ≥ 0 and r ≥ 0.

The Furuta question about characterization of the chaotic operator order
A ≫ B [9, (Q)2] was completely solved by Fujii et al. in [4]. Instead of
A ≫ B in the Furuta’s question, it is true that A ≥ B if and only if Ar−t ≥
[Ar/2(A−t/2BpA−t/2)sAr/2]

r−t
(p−t)s+r holds for all p ≥ 1, r ≥ t, s ≥ 1 and t ∈

[0, 1] [4, Theorem 1]. In the same paper they also claimed and proved the next
result.

Theorem FM. ([4, Theorem 5]) A ≫ B if and only if

(b0) Ar−t ≥ [Ar/2(A−t/2BpA−t/2)sAr/2]
r−t

(p−t)s+r hollds for all p ≥ 0, r ≥ 0,
s ∈ [1, 2] and t ≤ 0.

Obviously, Theorem FM is a generalization of Theorem FC, and the proof
of Theorem FM requires some nontrivial results including Theorem FC. Since
A ≫ B if and only if B−1 ≫ A−1, we remark that (a0) and (b0) are equivalent,
respectively, to the operator inequalities

(a1) (Br/2ApBr/2)
r

p+r ≥ Br hollds for all p ≥ 0 and r ≥ 0;

(b1) [Br/2(B−t/2ApB−t/2)sBr/2]
r−t

(p−t)s+r ≥ Br−t hollds for all p ≥ 0, r ≥ 0,
s ∈ [1, 2] and t ≤ 0.

Theorem D. ([1, Douglas’s majorization and factorization theorem]) For
any operators A and B the following statements are equivalent.

(c1) range(B) ⊆ range(A);
(c2) A∗ majorizes B∗, i.e., BB∗ ≤ λ2AA∗, i.e., ∥ B∗x ∥≤ λ ∥ A∗x ∥ for

some λ ≥ 0 and all x ∈ H (majorization);
(c3) There exists C such that B = AC (factorization).
Moreover, ∥ C ∥2=inf {µ | BB∗ ≤ µAA∗} (due to the equivalence of (c2)

and (c3)).

2. Characterizations of chaotic operator order A ≫ C ≫ B by
Theorem FM

We shall use Theorem FM to give different characterizations of the chaotic
operator order A ≫ C ≫ B in this section.

Theorem 2.1. For all p ≥ 0, r ≥ 0, s ∈ [1, 2] and t ≤ 0, the following are
equivalent to one another.

(2.1) A ≫ C ≫ B;

(b0) Ar−t ≥ [Ar/2(A−t/2BpA−t/2)sAr/2]
r−t

(p−t)s+r ;

(b1) [Br/2(B−t/2ApB−t/2)sBr/2]
r−t

(p−t)s+r ≥ Br−t;

(2.2) A
(p−t)s+r

q ≥ [Ar/2(A−t/2BpA−t/2)sAr/2]1/q for all q ≥ 1 such that
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(r − t)q ≥ (p − t)s + r;

(2.3) [Br/2(B−t/2ApB−t/2)sBr/2]1/q ≥ B
(p−t)s+r

q for all q ≥ 1 such that
(r − t)q ≥ (p − t)s + r;

(2.4) [Cr/2(C−t/2ApC−t/2)sCr/2]
r−t

(p−t)s+r ≥ [Cr/2(C−t/2CpC−t/2)sCr/2]
r−t

(p−t)s+r

≥ [Cr/2(C−t/2BpC−t/2)sCr/2]
r−t

(p−t)s+r ;
(2.5) Cr/2(C−t/2ApC−t/2)sCr/2 ≫ Cr/2(C−t/2CpC−t/2)sCr/2

≫ Cr/2(C−t/2BpC−t/2)sCr/2;
(2.6) [Cr/2(C−t/2ApC−t/2)sCr/2]1/q ≥ [Cr/2(C−t/2CpC−t/2)sCr/2]1/q

≥ [Cr/2(C−t/2BpC−t/2)sCr/2]1/q for all q ≥ 1 such that (r − t)q ≥ (p −
t)s + r.

Proof. That (2.1)⇔(b0)⇔(b1) is due to Theorem FM and a remark.
(b0)⇒(2.2). By (b0), we have

Aα(r−t) ≥ [Ar/2(A−t/2BpA−t/2)sAr/2]
α(r−t)

(p−t)s+r for all α ∈ [0, 1].

Letting α(r−t)
(p−t)s+r = 1

q in above yields (2.2). Since r−t
(p−t)s+r = 1

αq ≥ 1
q , (r− t)q ≥

(p− t)s + r ≥ r − t and q ≥ 1. (2.2)⇒(b0). Let (r − t)q = (p− t)s + r in (2.2).
Similarly we have (b1)⇔(2.3) and (2.2)⇔(2.3). (b0) and (b1)⇒(2.4). Let
B = C in (b1) and A = C in (b0). (2.4)⇒(2.5). Since the chaotic operator
order is weaker than the operator order, (2.5)⇒(2.1). Let r = t (i.e., r = t = 0)
and p = s = 1 in (2.5). Implications (2.2) and (2.3)⇒(2.6) and (2.6)⇒(2.5) are
easy now. The proof is thus completed. ¤

Let s = 1 and t = 0 in Theorem 2.1. Then we have the next result. Notice
that equivalence of statements (2.1), (2.9) and (2.10) below appeared in [7,
Theorem 1].

Corollary 2.2. For all p ≥ 0 and r ≥ 0, the following are equivalent to one
another.

(2.1) A ≫ C ≫ B;
(a0) Ar ≥ (Ar/2BpAr/2)

r
p+r ;

(a1) (Br/2ApBr/2)
r

p+r ≥ Br;

(2.7) A
p+r

q ≥ (Ar/2BpAr/2)1/q for all q ≥ 1 such that rq ≥ p + r;

(2.8) (Br/2ApBr/2)1/q ≥ B
p+r

q for all q ≥ 1 such that rq ≥ p + r;
(2.9) (Cr/2ApCr/2)

r
p+r ≥ (Cr/2CpCr/2)

r
p+r ≥ (Cr/2BpCr/2)

r
p+r ;

(2.10) Cr/2ApCr/2 ≫ Cr/2CpCr/2 ≫ Cr/2BpCr/2;
(2.11) (Cr/2ApCr/2)1/q ≥ (Cr/2CpCr/2)1/q ≥ (Cr/2BpCr/2)1/q for all q ≥ 1

such that rq ≥ p + r.

In relation, to Corollary 2.2, we mention that it was proved in [3, Theorem
1] that, if A ≫ B, then



70 C.-S. LIN

(BrApBr)
2r

p+2r ≥ B2r, equivalently, A2r ≥ (ArBpAr)
2r

p+2r

hold for all p ≥ 0 and r ≥ 0. The original proof was relatively long and complex.

3. Other possible characterizations of chaotic operator order
A ≫ C ≫ B due to Theorem 2.1

Reformations of operator inequalities (b0) and (b1) in Theorem 2.1 are the
keynotes in this section. The proofs of the following three results are similar to
the proof of Theorem 2.1 and we should provid for each one the outline only.

Theorem 3.1. For all p ≥ 0, r ≥ 0, s ∈ [1, 2] and t ≤ 0, the following are
equivalent to one another.

(2.1) A ≫ C ≫ B;

(3.1) Ar ≥ [Ar/2(A−t/2BpA−t/2)sAr/2]
r

(p−t)s+r ;

(3.2) [Br/2(B−t/2ApB−t/2)sBr/2]
r

(p−t)s+r ≥ Br;

(3.3) A
(p−t)s+r

q ≥ [Ar/2(A−t/2BpA−t/2)sAr/2]1/q for all q ≥ 1 such that
rq ≥ (p − t)s + r;

(3.4) [Br/2(B−t/2ApB−t/2)sBr/2]1/q ≥ B
(p−t)s+r

q for all q ≥ 1 such that
rq ≥ (p − t)s + r;

(3.5) [Cr/2(C−t/2ApC−t/2)sCr/2]
r

(p−t)s+r ≥ [Cr/2(C−t/2CpC−t/2)sCr/2]
r

(p−t)s+r

≥ [Cr/2(C−t/2BpC−t/2)sCr/2]
r

(p−t)s+r ;
(3.6) Cr/2(C−t/2ApC−t/2)sCr/2 ≫ Cr/2(C−t/2CpC−t/2)sCr/2

≫ Cr/2(C−t/2BpC−t/2)sCr/2;
(3.7) [Cr/2(C−t/2ApC−t/2)sCr/2]1/q ≥ [Cr/2(C−t/2CpC−t/2)sCr/2]1/q

≥ [Cr/2(C−t/2BpC−t/2)sCr/2]1/q for all q ≥ 1 such that rq ≥ (p−t)s+r.

Proof. By (b0) in Theorem 2.1, since r
r−t ≤ 1, we have (3.1) and so (2.1)⇒(3.1)

⇔(3.2). (3.1)⇒(3.3). By (3.1) we have

Aαr ≥ [Ar/2(A−t/2BpA−t/2)sAr/2]
αr

(p−t)s+r for all α ∈ [0, 1].

Let αr
(p−t)s+r = 1

q etc. (3.3)⇒(3.1). Let rq = (p − t)s + r in (3.3) and so the
proof is finished. ¤

Note that Theorem 3.1 also implies Corollary 2.2 by letting s = 1 and t = 0
in Theorem 3.1.

Theorem 3.2. For all p ≥ 0, r ≥ 0, s ∈ [1, 2] and t ≤ 0, the following are
equivalent to one another.

(2.1) A ≫ C ≫ B;

(3.8) A−t ≥ [Ar/2(A−t/2BpA−t/2)sAr/2]
−t

(p−t)s+r ;

(3.9) [Br/2(B−t/2ApB−t/2)sBr/2]
−t

(p−t)s+r ≥ B−t;
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(3.10) A
(p−t)s+r

q ≥ [Ar/2(A−t/2BpA−t/2)sAr/2]1/q for all q ≥ 1 such that
−tq ≥ (p − t)s + r;

(3.11) [Br/2(B−t/2ApB−t/2)sBr/2]1/q ≥ B
(p−t)s+r

q for all q ≥ 1 such that
−tq ≥ (p − t)s + r;

(3.12) [Cr/2(C−t/2ApC−t/2)sCr/2]
−t

(p−t)s+r ≥ [Cr/2(C−t/2CpC−t/2)sCr/2]
−t

(p−t)s+r

≥ [Cr/2(C−t/2BpC−t/2)sCr/2]
−t

(p−t)s+r ;
(3.13) Cr/2(C−t/2ApC−t/2)sCr/2 ≫ Cr/2(C−t/2CpC−t/2)sCr/2

≫ Cr/2(C−t/2BpC−t/2)sCr/2;
(3.14) [Cr/2(C−t/2ApC−t/2)sCr/2]1/q ≥ [Cr/2(C−t/2CpC−t/2)sCr/2]1/q

≥ [Cr/2(C−t/2BpC−t/2)sCr/2]1/q for all q ≥ 1 such that
−tq ≥ (p − t)s + r.

Proof. By (b0) in Theorem 2.1, since −t
r−t ≤ 1, we have (3.8) and so (2.1)⇒(3.8)

⇔(3.9). (3.8)⇒(3.10). By (3.8) we have

A−αt ≥ [Ar/2(A−t/2BpA−t/2)sAr/2]
−αt

(p−t)s+r for all α ∈ [0, 1].

Let −αt
(p−t)s+r = 1

q , etc. (3.10)⇒(3.8). Let −tq = (p − t)s + r in (3.10). ¤

In order to satisfy both conditions 1
r−t ≤ 1 and q ≥ 1 in the proof of the next

result, we have to assume r ≥ 1 (instead of r ≥ 0). Nevertheless, statemants
in Theorem 3.3 below (similar to statemants in previous results) are generally
not all equivalent to one another.

Theorem 3.3. For all p ≥ 0, r ≥ 1, s ∈ [1, 2] and t ≤ 0, consider the following
statements.

(2.1) A ≫ C ≫ B;

(3.15) A ≥ [Ar/2(A−t/2BpA−t/2)sAr/2]
1

(p−t)s+r ;

(3.16) [Br/2(B−t/2ApB−t/2)sBr/2]
1

(p−t)s+r ≥ B;

(3.17) A
(p−t)s+r

q ≥ [Ar/2(A−t/2BpA−t/2)sAr/2]1/q for all q ≥ 1 such that
q ≥ (p − t)s + r;

(3.18) [Br/2(B−t/2ApB−t/2)sBr/2]1/q ≥ B
(p−t)s+r

q for all q ≥ 1 such that
q ≥ (p − t)s + r;

(3.19) [Cr/2(C−t/2ApC−t/2)sCr/2]
1

(p−t)s+r

≥ [Cr/2(C−t/2CpC−t/2)sCr/2]
1

(p−t)s+r

≥ [Cr/2(C−t/2BpC−t/2)sCr/2]
1

(p−t)s+r ;
(3.20) Cr/2(C−t/2ApC−t/2)sCr/2 ≫ Cr/2(C−t/2CpC−t/2)sCr/2

≫ Cr/2(C−t/2BpC−t/2)sCr/2;
(3.21) [Cr/2(C−t/2ApC−t/2)sCr/2]1/q ≥ [Cr/2(C−t/2CpC−t/2)sCr/2]1/q
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≥ [Cr/2(C−t/2BpC−t/2)sCr/2]1/q for all q ≥ 1 such that q ≥ (p−t)s+r.

Then we conclude that (2.1)⇒(3.15), and statements (3.15), (3.16), (3.17) and
(3.18) are equivalent to one another. Moreover, the following implications hold:
(3.15)⇒(3.19)⇒(3.20) and (3.18)⇒(3.21)⇒(3.20).

Proof. By (b0) in Theorem 2.1, since 1
r−t ≤ 1, we have (3.15) and so (2.1)⇒

(3.15)⇔(3.16). (3.15)⇒(3.17). By (3.15) we have

Aα ≥ [Ar/2(A−t/2BpA−t/2)sAr/2]
α

(p−t)s+r for all α ∈ [0, 1].

Let α
(p−t)s+r = 1

q , etc. Then q ≥ (p − t)s + r ≥ 1 as r ≥ 1. (3.17)⇒(3.15). Let
q = (p − t)s + r in (3.17).

All other implications can be proved as before. This completes the proof. ¤
The next result was proved in [2, Lemma 1] by making use of the induction

process. In fact, the result is a simple special case of Theorem 3.3.

Corollary 3.4. ([2, Lemma 1]) If A ≫ B and for all possitive integers n, we
have

(Bn/2A2Bn/2)
1

n+2 ≥ B.

Proof. Let p = 2, r = n, s = 1 and t = 0 in (3.16) of Theorem 3.3. ¤

4. Some satellite theorems of Furuta

The α-geometric mean of operators A and B introduced by Kubo-Ando [13]
is given by

A♯αB = A1/2(A−1/2BA−1/2)αA1/2 for all α ∈ [0, 1].

The binary operation ♮β for A and B is defined the same as ♯α for any real
number β, i.e., A ♮β B = A1/2(A−1/2BA−1/2)αA1/2. Due to the α-Geometric
mean of two operators there are two types of the so called satellite theorem of
Furuta, and both are indicated as follows.

(j) ([11, Satellite theorm of Furuta inequality]) If A ≥ B ≥ O, then

A−r♯ 1+r
p+r

Bp ≤ B ≤ A ≤ B−r ♯ 1+r
p+r

Ap holds for all r ≥ 0 and p ≥ 1.

(jj) ([12, Satellite theorem of chaotic Furuta inequality]) If A ≫ B for
A,B > O, then

A−r ♯ 1+r
p+r

Bp ≤ B ≪ A ≤ B−r ♯ 1+r
p+r

Ap holds for all r ≥ 0 and p ≥ 1.

It is clear now that in the above satellite theorems, if (jj) holds true, then so
does (j). It follows that Theorem FC in section 1 may be expressed as follows:
For p ≥ 0 and r ≥ 0, and if A ≫ B, then

A−r♯ r
p+r

Bp ≤ I ≤ B−r ♯ r
p+r

Ap.
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In this section, we construct two formulas, Theorem 4.1 and 4.3 below, and
use them to prove some satellite theorems. First, the following well-known
results are required.

Theorem F. ([Furuta Inequality]) If A ≥ B ≥ O, then, for each r ≥ 0, both
inequalities

(a) A
p+r

q ≥ (Ar/2BpAr/2)1/q:

(b) (Br/2ApBr/2)1/q ≥ B
p+r

q hold for p ≥ 0 and q ≥ 1 with (1+r)q ≥ p+r.

Lemma F. ([3, Furuta Lemma]) For any real number r, the next equality
holds

(BAB)r = BA1/2(A1/2B2A1/2)r−1A1/2B.

Theorem GF. ([8, Grand Furuta inequality]) If A ≥ B, then, for each t ∈
[0, 1],

A1−t+r ≥ [Ar/2(A−t/2BpA−t/2)sAr/2]
1−t+r

(p−t)s+r t holds for all s ≥ 1, p ≥ 1
and r ≥ t.

Theorem 4.1. Given operators A,B and for, any real numbers a, b, c and d,
the following hold.

(4.1) If (Bb/2A−aBb/2)c−1 ≤ Bd, then Aa ♮c Bb ≤ Bb+d.

(4.2) If (Ab/2B−aAb/2)c−1 ≥ Ad, then Ab+d ≤ Ba ♮c Ab.

Proof. (4.1) By assumption, we have

Aa ♮c Bb

= Aa/2(A−a/2BbA−a/2)cAa/2

= Aa/2A−a/2Bb/2(Bb/2A−aBb/2)c−1Bb/2A−a/2Aa/2 by Lemma F

= Bb/2(Bb/2A−aBb/2)c−1Bb/2

≤ Bb+d.

That (4.2) follows similarly. ¤
Now, let us give alternative proofs of satellite theorems (j) and (jj) in above.

(j) If A ≥ B, then (Br/2ApBr/2)
1+r
p+r ≥ B1+r for all p ≥ 1 and r ≥

0 by (b) in Theorem F, i.e., B−(1+r) ≥ (Br/2ApBr/2)−
1+r
p+r . Then B1−r ≥

(Br/2ApBr/2)
1−r
p+r as 0 ≤ r−1

1+r < 1 for r ≥ 1. Now, let d = 1 − r, b = r, −a = p

and c− 1 = 1−r
p+r in Theorem 4.1. Then A−p ♯ 1+p

p+r
Br ≤ B ≤ A ≤ B−p ♯ 1+p

p+r
Ar.

The first inequality in (j) follows by interchanging of r with p.

(jj) By (a1) in Theorem FC, (Br/2ApBr/2)
r

p+r ≥ Br for all p ≥ 0 and
r ≥ 0. Then B−r ≥ (Br/2ApBr/2)

−r
p+r , so that B1−r ≥ (Br/2ApBr/2)

1−r
p+r as

0 ≤ r−1
r < 1 for all r ≥ 1. the rest of the proof is the same as (j) above.
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It is worth noting from the proofs above that the idea is to make b + d = 1
by applying the Löwner-Heinz inequality to the existing operator inequality.

Corollary 4.2. If A ≫ B, then, for all p ≥ 0, r ≥ 1 and t ≤ 0,

A−p♯ 1+p
p−t+r

Br−t ≤ B ≪ A ≤ B−p ♯ 1+p
p−t+r

Ar−t.

Moreover, the inequality holds, too, if A ≥ B and for all p ≥ 0, r ≥ 1 and
t ≤ 0.

Proof. In (b1) of Theorem FM, let s = 1, then (B
r−t
2 ApB

r−t
2 )

r−t
p−t+r ≥ Br−t

for all p ≥ 0, r ≥ 0 and t ≤ 0, i.e., B−(r−t) ≥ (B
r−t
2 ApB

r−t
2 )

−(r−t)
p−t+r , which

yields B1+t−r ≥ (B
r−t
2 ApB

r−t
2 )

1+t−r
p−t+r as 0 ≤ 1+t−r

t−r < 1 for all r ≥ 1. Now, let
d = 1 + t − r, b = r − t, −a = p and c − 1 = 1+t−r

p−t+r in Theorem 4.1 to get the
first inequality. ¤
Theorem 4.3. Given operators A, B,X, Y and, for any real numbers a, b, c
and d, the following hold.

(4.3) If (Bb/2X−aBb/2)c−1 ≤ Bd, thenXa ♮c Bb ≤ Bb+d.

(4.4) If (Ab/2Y −aAb/2)c−1 ≥ Ad, then Ab+d ≤ Y a ♮c Ab.

Proof. The proof is similar to Theorem 4.1 and should be omitted. ¤
Using Theorem GF, we have the following.

Corollary 4.4. If A ≥ B, then, for all p ≥ 1, r, s ≥ 1 and t ∈ [0, 1],

(B−t/2ApB−t/2)−s ♯ 1+(p−t)s
(p−t)s+r

Br ≤ B ≤ A ≤ (A−t/2BpA−t/2)−s ♯ 1+(p−t)s
(p−t)s+r

Ar.

Proof. The grand Furuta inequality is obviously equivalent to

[Br/2(B−t/2ApB−t/2)sBr/2]
1−t+r

(p−t)s+r ≥ B1−t+r

for all s ≥ 1, p ≥ 1, r ≥ t ∈ [0, 1],
B−(1−t+r) ≥ [Br/2(B−t/2ApB−t/2)sBr/2]−

1−t+r
(p−t)s+r .

It follows that

B1−r ≥ [Br/2(B−t/2ApB−t/2)sBr/2]
1−r

(p−t)s+r

as 0 ≤ r−1
1−t+r < 1 for r ≥ 1. Let X = B−t/2ApB−t/2, −a = s, b = r, d = 1 − r

and c − 1 = 1−r
(p−t)s+r in Theorem 4.3. Then the first inequality in question

follows. The last inequality could be done similarly with Y = A−t/2BpA−t/2.

Using Theorem FM, we have the following.

Corollary 4.5. If A ≫ B, then, for all p ≥ 0, r ≥ 1, s ∈ [1, 2], and t ≤ 1,

(B−t/2ApB−t/2)−s♯ 1+(p−t)s
(p−t)s+r

Br ≤ B ≤ A ≤ (A−t/2BpA−t/2)−s♯ 1+(p−t)s
(p−t)s+r

Ar.
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Moreover, the inequality holds, too, if A ≥ B and for all p ≥ 0, r ≥ 1,
s ∈ [1, 2] and t ≤ 1.

Proof. Since by (b1) in Theorem FM,

[Br/2(B−t/2ApB−t/2)sBr/2]
r−t

(p−t)s+r ≥ Br−t

for p ≥ 0, r ≥ 0, s ∈ [1, 2] and t ≤ 0, so that

B−(r−t) ≥ [Br/2(B−t/2ApB−t/2)sBr/2]−
r−t

(p−t)s+r .

Hence B1−r ≥ [Br/2(B−t/2ApB−t/2)sBr/2]
1−r

(p−t)s+r as 0 ≤ 1−r
t−r ≤ 1 for all

r ≥ 1 and t ≤ 1. Let X = B−t/2ApB−t/2, −a = s, b = r, d = 1 − r and
c − 1 = 1−r

(p−t)s+r in Theorem 4.3. Then we have the required inequalities as in
Corollary 4.4. ¤

We may apply results in the section 3 to obtain more satellite theorems of
Furuta, and we shall leave it to the reader. To conclude this section it is worth
noting that some different satellite theorems of the chaotic Furuta inequality
may be found in a recent paper in [5]; and the relationship between the operator
order and the chaotic operator order are given and explained there.

5. Characterizations of chaotic operator order A ≫ B by
Theorem D

In the literature the chaotic operator order A ≫ B was characterized in
terms of operator inequalities, including our section two and three. In this
section it will be done in terms of operator equalities due to Theorem D and
previous results in sections 2 and 3.

Theorem 5.1. For all p ≥ 0, r ≥ 0, s ∈ [1, 2], t ≤ 0 and a nonnegative integer
n ≥ 0 such that (r− t)(n+1) = (p− t)s+ r, the following are equivalent to one
another.

(5.1) A ≫ B;

(5.2) Ar−t ≥ [Ar/2(A−t/2BpA−t/2)sAr/2]
1

n+1 ;

(5.3) [Br/2(B−t/2ApB−t/2)sBr/2]
1

n+1 ≥ Br−t;

(5.4) There exists a unique S1 > O with ∥ S1 ∥≤ 1 such that

Ar/2(A−t/2BpA−t/2)sAr/2 = (A
r−t
2 S1A

r−t
2 )n+1, i.e.,

(A−t/2BpA−t/2)s = A−t/2S1(Ar−tS1)nA−t/2 = A−t/2(S1A
r−t)nS1A

−t/2;

(5.5) There exists a unique S1 > O with ∥ S1 ∥≤ 1 such that

Br/2(B−t/2ApB−t/2)sBr/2 = (B
r−t
2 S−1

1 B
r−t
2 )n+1, i.e.,

(B−t/2ApB−t/2)s

= B−t/2S−1
1 (Br−tS−1

1 )nB−t/2 = B−t/2(S−1
1 Br−t)nS−1

1 B−t/2.
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Proof. For all p ≥ 0, r ≥ 0, s ∈ [1, 2], t ≤ 0 and a nonnegative ingeter n ≥ 0
such that (r − t)(n + 1) = (p − t)s + r, we let q = n + 1 ≥ 1. Then conditions
(2.2) and (2.3) in Theorem 2.1 are obviously satisfied and so (5.1), (5.2) and
(5.3) are equivalent to one another due to Theorem 2.1.

(5.2)⇒(5.4). By Theorem D there exists D with ∥ D ∥≤ 1 such that

[Ar/2(A−t/2BpA−t/2)sAr/2]
1

2(n+1) = A
r−t
2 D = D∗A

r−t
2 .

Let S1 = DD∗ and so ∥ S1 ∥=∥ D ∥2≤ 1. Then

[Ar/2(A−t/2BpA−t/2)sAr/2]
1

n+1 = A
r−t
2 S1A

r−t
2

and S1 is clearly unique, here we may assume S1 > O without loss of generality.
Now, (5.4) follows immediately since

Ar/2(A−t/2BpA−t/2)sAr/2 = (A
r−t
2 S1A

r−t
2 )n+1

= A
r−t
2 S1(Ar−tS1)nA

r−t
2 = A

r−t
2 (S1A

r−t)nS1A
r−t
2 .

(5.4)⇒(5.2). By (5.4),

[Ar/2(A−t/2BpA−t/2)sAr/2]
1

n+1 = A
r−t
2 S1A

r−t
2 ≤ Ar−t,

the inequality is due to the fact that S1 ≤∥ S1 ∥ I ≤ I as S1 is Hermitian, and
we have (5.2).

Next, since A ≫ B if and only if B−1 ≫ A−1, (5.4) is equivalent to (5.5)
and so this completes the proof. ¤

Now, letting s = 1 and t = 0 in Theorem 5.1 yields the next result, which
was originally proved in [12, Theorem 2.2].

Corollary 5.2. For all p ≥ 0, r ≥ 0 and a nonnegative integer n ≥ 0 such
that r(n + 1) = p + r, the following are equivalent to one another.

(5.1) A ≫ B;

(5.6) Ar ≥ (Ar/2BpAr/2)
1

n+1 ;

(5.7) (Br/2ApBr/2)
1

n+1 ≥ Br;
(5.8) There exists a unique S2 > O with ∥ S2 ∥≤ 1 such that

Ar/2BpAr/2 = (Ar/2S2A
r/2)n+1, i.e., Bp = S2(ArS2)n = (S2A

r)nS2;
(5.9) There exists a unique S2 > O with ∥ S2 ∥≤ 1 such that

Br/2ApBr/2 = (Br/2S−1
2 Br/2)n+1, i.e.,

Ap = S−1
2 (BrS−1

2 )n = (S−1
2 Br)nS−1

2 .

The proofs of the following three results are similar to the proof of Theorem
5.1, and we should provid for each one the outline only.

Theorem 5.3. For all p ≥ 0, r ≥ 0, s ∈ [1, 2], t ≤ 0 and a nonnegative integer
n ≥ 0 such that r(n + 1) = (p − t)s + r, the following are equivalent to one
another.
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(5.1) A ≫ B;

(5.10) Ar ≥ [Ar/2(A−t/2BpA−t/2)sAr/2]
1

n+1 ;

(5.11) [Br/2(B−t/2ApB−t/2)sBr/2]
1

n+1 ≥ Br;

(5.12) There exists a unique S3 > O with ∥ S3 ∥≤ 1 such that

Ar/2(A−t/2BpA−t/2)sAr/2 = (Ar/2S3A
r/2)n+1, i.e.,

(A−t/2BpA−t/2)s = S3(ArS3)n = (S3A
r)nS3;

(5.13) There exists a unique S3 > O with ∥ S3 ∥≤ 1 such that

Br/2(B−t/2ApB−t/2)sBr/2 = (Br/2S−1
3 Br/2)n+1, i.e.,

(B−t/2ApB−t/2)s = S−1
3 (BrS−1

3 )n = (S−1
3 Br)nS−1

3 .

Proof. For all p ≥ 0, r ≥ 0, s ∈ [1, 2], t ≤ 0 and a nonnegative ingeter n ≥ 0
such that r(n + 1) = (p − t)s + r, we let q = n + 1 ≥ 1. Then conditions (3.3)
and (3.4) in Theorem 3.1 are obviously satisfied and so (5.1), (5.10) and (5.11)
are equivalent to one another due to Theorem 3.1.

(5.10)⇒(5.12). By Theorem D there exists E with ∥ E ∥≤ 1 such that

[Ar/2(A−t/2BpA−t/2)sAr/2]
1

2(n+1) = Ar/2E = E∗Ar/2.

Let S3 = EE∗ and so ∥ S3 ∥=∥ E ∥2≤ 1. Then

[Ar/2(A−t/2BpA−t/2)sAr/2]
1

n+1 = Ar/2S3A
r/2

and S3 is clearly unique, here we may assume S3 > O without loss of generality.
Now, (5.12) follows immediately since

Ar/2(A−t/2BpA−t/2)sAr/2 = (Ar/2S3A
r/2)n+1

= Ar/2S3(ArS3)nAr/2 = Ar/2(S3A
r)nS3A

r/2. ¤
Theorem 5.4. For all p ≥ 0, r ≥ 0, s ∈ [1, 2], t ≤ 0 and a nonnegative integer
n ≥ 0 such that −t(n + 1) = (p − t)s + r, the following are equivalent to one
another.

(5.1) A ≫ B;

(5.14)A−t ≥ [Ar/2(A−t/2BpA−t/2)sAr/2]
1

n+1 ;

(5.15) [Br/2(B−t/2ApB−t/2)sBr/2]
1

n+1 ≥ B−t;

(5.16) There exists a unique S4 > O with ∥ S4 ∥≤ 1 such that

Ar/2(A−t/2BpA−t/2)sAr/2 = (A−t/2S4A
−t/2)n+1, i.e.,

(A−t/2BpA−t/2)s = A
r+t
−2 S4(A−tS4)nA

r+t
−2 = A

r+t
−2 (S4A

−t)nS4A
r+t
−2 ;

(5.17) There exists a unique S4 > O with ∥ S4 ∥≤ 1 such that

Br/2(B−t/2ApB−t/2)sBr/2 = (B−t/2S−1
4 B−t/2)n+1, i.e.,

(B−t/2ApB−t/2)s

= B
r+t
−2 S−1

4 (B−tS−1
4 )nB

r+t
−2 = B

r+t
−2 (S−1

4 B−t)nS−1
4 B

r+t
−2 .
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Proof. For all p ≥ 0, r ≥ 0, s ∈ [1, 2], t ≤ 0 and a nonnegative ingeter n ≥ 0
such that −t(n + 1) = (p− t)s + r, we let q = n + 1 ≥ 1. Then conditions (3.8)
and (3.9) in Theorem 3.2 are obviously satisfied and so (5.1), (5.14) and (5.15)
are equivalent to one another due to Theorem 3.2. ¤
Theorem 5.5. For all p ≥ 0, r ≥ 1, s ∈ [1, 2], t ≤ 0 and a nonnegative integer
n ≥ 0 such that n + 1 = (p − t)s + r, consider the following statements.

(5.1) A ≫ B;

(5.18) A ≥ [Ar/2(A−t/2BpA−t/2)sAr/2]
1

n+1 ;

(5.19) [Br/2(B−t/2ApB−t/2)sBr/2]
1

n+1 ≥ B;
(5.20) There exists a unique S5 > O with ∥ S5 ∥≤ 1 such that

Ar/2(A−t/2BpA−t/2)sAr/2 = (A1/2S5A
1/2)n+1, i.e.,

(A−t/2BpA−t/2)s = A
1−r
2 S4(AS4)nA

1−r
2 = A

1−r
2 (S4A)nS4A

1−r
2 ;

(5.21) There exists a unique S4 > O with ∥ S4 ∥≤ 1 such that
Br/2(B−t/2ApB−t/2)sBr/2 = (B1/2S−1

4 B1/2)n+1, i.e.,

(B−t/2ApB−t/2)s = B
1−r
2 S−1

4 (BS−1
4 )nB

1−r
2 = B

1−r
2 (S−1

4 B)nS−1
4 B

1−r
2 .

Then we conclude that implication (5.1)⇒(5.18) holds, and statements (5.18),
(5.19), (5.20) and (5.21) are equivalent to one another.

Proof. We let q = n+1 ≥ 1. Then conditions (3.17) and (3.18) in Theorem 3.3
are satisfied, and so we have implications (5.1)⇒(5.18)⇔(5.19) due to Theorem
3.3. The rest of the proof should be omitted. ¤
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