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GENERALIZED PROJECTION AND APPROXIMATION FOR
GENERALIZED VARIATIONAL INEQUALITIES SYSTEM IN

BANACH SPACES

Xin-feng He, Yong-chun Xu and Zhen He

Abstract. The approximate solvability of a generalized system for non-
linear variational inequality in Hilbert spaces was studied, based on the
convergence of projection methods. But little research was done in Ba-

nach space. The primary reason was that projection mapping lacked
preferably property in Banach space. In this paper, we introduced the
generalized projection methods. By using these methods, the results pre-
sented in this paper extended the main results of S. S. Chang [3] from

Hilbert spaces to Banach space.

1. Introduction and Preliminary

Let B be a Banach space with dual space B∗. As usually, ⟨φ, x⟩ denotes the
duality pairing of B∗ and B, where φ ∈ B∗ and x ∈ B. ( If B is a Hilbert
space, ⟨φ, x⟩ denotes an inner product in it.) Let K be a nonempty, closed and
convex subset of B and T : K ×K → B∗ a mapping. We consider a system of
nonlinear variational inequality (SNVI) problem as follows: to find x∗, y∗ ∈ K
such that

⟨ρT (y∗, x∗) + Jx∗ − Jy∗, x − x∗⟩ ≥ 0, ∀x ∈ K, ρ > 0;(1.1)

⟨ηT (x∗, y∗) + Jy∗ − Jx∗, x − y∗⟩ ≥ 0, ∀x ∈ K, η > 0,(1.2)

where the J : B → 2B∗
is normalized duality mapping defined by

J(x) ∈ ⟨J(x), x⟩ = ∥J(x)∥∥x∥ = ∥x∥2 = ∥J(x)∥2, ∀x ∈ B,

where ⟨·, ·⟩ denotes the generalized duality pairing of B∗ and B. Without
confusion, one understands that ∥J(x)∥ is the B∗ norm and ∥x∥ is the B-
norm. Take a functional V : B∗×B → R, which is called Lyapunov functional,
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is defined by the formula:

V (φ, x) = ∥φ∥2 − 2⟨φ, x⟩ + ∥x∥2,

where φ ∈ B∗ and x ∈ B. It is easy to see that V (φ, x) ≥ (∥φ∥ − ∥x∥)2. Thus
the functional V : B∗ × B → R+ is nonnegative.

Definition. ([1, Definition 6.2]) Operator πK : B∗ → K is called the general-
ized projection operator if it associates with an arbitrary fixed point φ ∈ B∗ the
minimum point of the functional V (φ, x), i.e., a solution to the minimization
problem

(1.3) V (φ, πKφ) = inf
y∈K

V (φ, y).

πKφ ∈ K ⊂ B is then called a generalized projection of the point φ.

Applying the definitions of V and J , a functional V2 : B ×B → R is defined
by the formula:

V2(x, y) = V (Jx, y), ∀x, y ∈ B.

The following properties of the operators J, V and πK are useful for our
paper (see [1] or [2]).

(i) J is a monotone and bounded operator in arbitrary Banach spaces.
(ii) J is a strictly monotone operator in strictly convex Banach spaces.
(iii) J is a continuous operator in smooth Banach paces.
(iv) J is an uniformly continuous operator on each bounded set in uniformly

smooth Banach spaces.
(v) J is the identity operator in Hilbert spaces, i.e., J = IH .
(vi) V (ϕ, x) is continuous.
(vii) V (φ, x) is convex with respect to φ when x is fixed and with respect

to x when ϕ is fixed.
(viii) (∥φ∥ − ∥x∥)2 ≤ V (φ, x) ≤ (∥φ∥ + ∥x∥)2.
(ix) V (φ, x) = 0 if and only if φ = Jx.

If B is a reflexive Banach space with dual space B∗ and K is a nonempty,
closed and convex subset of B, then the following properties hold:

(x) V (JπKφ, x) ≤ V (φ, x) for all φ ∈ B∗ and x ∈ B.
(xi) The operator πK is J fixed in each point x ∈ K, i.e., πKJx = x.
(xii) πK is monotone in B∗, i.e., for all φ1, φ2 ∈ B∗,

⟨πKφ1 − πKφ2, φ1 − φ2⟩ ≥ 0.

(xiii) If the Banach space B is uniformly smooth, then πK is continuous and,
for all φ1, φ2 ∈ B∗, we have

∥πKφ1 − πKφ2∥ ≤ 2R1g
−1
B (∥φ1 − φ2∥/R1),

where R1 = (∥πKφ1∥2 + ∥πKφ2∥2)1/2 and g−1
B is the inverse function to gB

that is defined by the modulus of smoothness for a uniformly smooth Banach
space.
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(xiv) If B is also smooth, then operator πK : B∗ → K is single valued and,
for any given φ ∈ B∗,

⟨φ − Jφ̃, φ̃ − x⟩ ≥ 0, ∀x ∈ K ⇐⇒ φ̃ = πKφ.

Once the generalized projection operator πK : B∗ → K is introduced, solving
the variational inequalities (1.1) and (1.2) is equivalent to finding a fixed point
of a special operator from K to K. That is described by the following theorem.

Theorem A. Let B be an smooth Banach space, T be an arbitrary operator
from B × B to B∗ and ρ, η be two arbitrary fixed positive number. Then the
points (x∗, y∗) ∈ K ×K is a solution of the variational inequality system (1.1)
and (1.2) if and only if (x∗, y∗) ∈ K ×K is a solution of the following operator
equations in B × B

x∗ = πK [Jy∗ − ρT (y∗, x∗)], ∀ρ > 0,(1.4)

y∗ = πK [Jx∗ − ηT (x∗, y∗)], ∀η > 0.(1.5)

Proof. The variational inequality (1.1) can write to

⟨Jy∗ − ρT (y∗, x∗) − Jx∗, x∗ − x⟩ ≥ 0.

By the property (xiv), the above formula is equivalent to

x∗ = πK [Jy∗ − ρT (y∗, x∗)], ∀ρ > 0.

Similarly, the variational inequality (1.2) is equivalent to the following projec-
tion formula:

y∗ = πK [Jx∗ − ηT (x∗, y∗)], ∀η > 0.

This completes the proof. ¤
Next, we consider some special cases of the SNVI problems (1.1) and (1.2):

(I) If η = 0, then, applying the properties (xi), (xiv) and Theorem A, the
SNVI problems (1.1) and (1.2) reduces to the following nonlinear variational
inequality (NVI) problem: to find x∗ ∈ K such that

(1.6) ⟨T (x∗, x∗.), x − x∗⟩ ≥ 0, ∀x ∈ K.

(II) If K is a closed convex cone of B, then the SNVI problems (1.1) and
(1.2) is equivalent to the following system of nonlinear complementarity (SNC)
problems: to find x∗, y∗ ∈ K such that T (y∗, x∗) ∈ K∗, T (x∗, y∗) ∈ K∗ and

⟨ρT (y∗, x∗) + Jx∗ − Jy∗, x∗⟩ = 0, ∀ρ > 0;(1.7)

⟨ηT (x∗, y∗) + Jy∗ − Jx∗, y∗⟩ = 0, ∀η > 0,(1.8)

where K∗ is the polar cone to K defined by

K∗ = {f ∈ B∗ : ⟨f, x⟩ ≥ 0, ∀x ∈ K}.
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(III) If T : K → B∗ is a univariate mapping, then the SNVI problems (1.1)
and (1.2) are reduced to the following SNVI problem: to find x∗, y∗ ∈ K such
that

⟨ρT (y∗) + Jx∗ − Jy∗, x − x∗⟩ ≥ 0, ∀x ∈ K, ρ > 0;(1.9)

⟨ηT (x∗) + Jy∗ − Jx∗, x − y∗⟩ ≥ 0, ∀x ∈ K, η > 0.(1.10)

2. Algorithms

In this section, we deal with an introduction of general two-step models
for generalized projection methods and its special form can be applied to the
convergence analysis for generalized projection methods in the context of the
approximation solvability of the SNVI problems (1.1), (1.2) and (1.9), (1.10),
etc.

Algorithm 2.1. (see [3]) For arbitrarily chosen initial points x0, y0 ∈ K,
compute the sequences {xn} and {yn} such that

(2.1)

{
xn+1 = (1 − αn)xn + αnπK [Jyn − ρT (yn, xn)]

yn = (1 − βn)xn + βnπK [Jxn − ηT (xn, yn)],

where πK is the generalized projection of B∗ onto K, ρ and η > 0 are constants
and {αn}, {βn} are sequences in [0, 1].

If T : K → B∗ is a univariate mapping, then Algorithm 2.1 is reduced to
the following:

Algorithm 2.2. For arbitrarily chosen initial points x0, y0 ∈ K, compute the
sequences {xn} and {yn} such that

(2.2)

{
xn+1 = (1 − αn)xn + αnπK [Jyn − ρT (yn)],

yn = (1 − βn)xn + βnπK [Jxn − ηT (xn)],

where πK is the generalized projection of B∗ onto K, ρ, η > 0 are constants
and {αn}, {βn} are sequences in [0, 1].

For βn = 1 in Algorithm 2.1, we have the following:

Algorithm 2.3. For arbitrarily chosen initial points x0, y0 ∈ K compute the
sequence {xn} and {yn} such that

(2.3)

{
xn+1 = (1 − αn)xn + αnπK [Jyn − ρT (yn, xn)],

yn = πK [Jxn − ηT (xn, yn)],

where {αn} ⊂ [0, 1] for all n ≥ 0.

For η = 0 and βn = 1 in Algorithm 2.1, we have the following:
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Algorithm 2.4. For arbitrarily chosen initial point x0 ∈ K, compute the
sequence {xn} such that

(2.4) xn+1 = (1 − αn)xn + αnπK [Jxn − ρT (xn, xn)],

where {αn} ⊂ [0, 1] for all n ≥ 0.

3. An approximation of the solutions of the variational inequality
systems (1.1) and (1.2)

In this section, we study the approximation of the solution of the variational
inequality systems (1.1) and (1.2) by the Ishikawa sequence. The techniques
used in this section have been used by many authors (see [5]-[8]). The following
lemma given by Chidume and Li [4] is useful for the proof of the theorem in
this section.

Lemma 3.1. ([4, Lemma 3.4]) Let B be a uniformly convex Banach space.
Then for arbitrary r > 0, there exists a continuous, strictly increasing convex
function g : R+ → R+, g(0) = 0, such that, for all x1, x2, y ∈ Br(0) := {x ∈
B : ∥x∥ ≤ r} and α ∈ [0, 1], the following inequality holds:

(3.1)
V2(αx1 + (1 − α)x2, y)

≤ αV2(x1, y) + (1 − α)V2(x2, y) − α(1 − α)g(∥x1 − x2∥).

Lemma 3.2. Let B be a real Banach space and J : B → B∗ be the normalized
duality mapping, then for any x, y ∈ B the following holds:

∥x + y∥2 ≤ ∥x∥2 + 2⟨y, j(x + y)⟩, ∀j(x + y) ∈ J(x + y).

Definition 3.1 A two-variable mapping T : K × K → B∗ is said to be
completely continuous mapping, if xn ⇀ x, yn ⇀ y implies that T (xn, yn) →
T (x, y).

Theorem 3.1. Let B be an uniformly convex and uniformly smooth Banach
space and let K be a closed and convex subset of B. Let T : K ×K → B∗ be a
mapping on K × K such that J − rT (r > 0) be a completely continuous and

(3.2) ⟨T (x, y), J∗[Jx − rT (x, y)]⟩ ≥ 0, ∀x, y ∈ K,

where J∗ = J−1 is the normalized duality mapping on B∗. Suppose that
(x∗, y∗) ∈ K×K is a solution to the SNVI problems (1.1), (1.2) and {xn}, {yn}
are the sequences generated by Algorithm 2.1. If {αn} and {βn} satisfies con-
ditions 0 < a ≤ αn ≤ b < 1, 0 < c ≤ βn ≤ d < 1. Then the sequences {xn} and
{yn} converge strongly to x∗ and y∗, respectively.

Proof. For any z ∈ B, from Algorithm 2.1 and the inequality (3.1) of Lemma
3.1, we have

(3.3)
V2(xn+1, z) ≤ (1 − αn)V2(xn, z) + αnV2(πK [Jyn − ρT (yn, xn)], z)

− αn(1 − αn)g(∥πK [Jyn − ρT (yn, xn)] − xn∥),
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(3.4)
V2(yn, z) ≤ (1 − βn)V2(xn, z) + βnV2(πK [Jxn − ηT (xn, yn)], z)

− βn(1 − βn)g(∥πK [Jxn − ηT (xn, yn)] − xn∥).

From the definition of the functional V2, Lemma 3.2 and the convexity prop-
erty of the Lyapunov functional V , we obtain

(3.5)

V2(πK [Jxn − ηT (xn, yn)], z)

= V (JπK [Jxn − ηT (xn, yn)], z)

≤ V (Jxn − ηT (xn, yn), z)

= ∥Jxn − ηT (xn, yn)∥2 + ∥z∥2 − 2⟨Jxn − ηT (xn, yn), z⟩
≤ ∥xn∥2 − 2η⟨T (xn, yn), J∗[Jxn − ηT (xn, yn)]⟩

+ ∥z∥2 − 2⟨Jxn − ηT (xn, yn), z⟩
= ∥xn∥2 − 2⟨Jxn, z⟩ + ∥z∥2 − 2η⟨T (xn, yn), J∗[Jxn − ηT (xn, yn)] − z⟩
≤ V (Jxn, z) − 2η⟨T (xn, yn), J∗[Jxn − ηT (xn, yn)] − z⟩
= V2(xn, z) − 2η⟨T (xn, yn), J∗[Jxn − ηT (xn, yn)] − z⟩,

(3.6)

V2(πK [Jyn − ρT (yn, xn)], z)

= V (JπK [Jyn − ρT (yn, xn)], z)

≤ V (Jyn − ρT (yn, xn), z)

≤ V2(yn, z) − 2ρ⟨T (yn, xn), J∗[Jyn − ρT (yn, xn)] − z⟩.

Substituting the above inequality into inequality (3.3), (3.4) and applying the
condition (3.2), we have

(3.7)

V2(yn, z) ≤ (1 − βn)V2(xn, z) + βnV2(πK [Jxn − ηT (xn, yn)], z)

− βn(1 − βn)g(∥πK [Jxn − ηT (xn, yn)] − xn∥)
≤ (1 − βn)V2(xn, z) + βnV2(xn, z)

− 2ηβn⟨T (xn, yn), J∗[Jxn − ηT (xn, yn)] − z⟩
− βn(1 − βn)g(∥πK [Jxn − ηT (xn, yn)] − xn∥)

≤ V2(xn, z) − 2ηβn⟨T (xn, yn), J∗[Jxn − ηT (xn, yn)] − z⟩
− βn(1 − βn)g(∥πK [Jxn − ηT (xn, yn)] − xn∥),

(3.8)

V2(xn+1, z) ≤ (1 − αn)V2(xn, z) + αnV2(yn, z)

− 2ραn⟨T (yn, xn), J∗[Jyn − ρT (yn, xn)] − z⟩
− αn(1 − αn)g(∥πK [Jyn − ρT (yn, xn)] − xn∥)

≤ V2(xn, z) + 2ραn⟨T (yn, xn), z⟩ + 2ηαnβn⟨T (xn, yn), z⟩
− αnβn(1 − βn)g(∥πK [Jxn − ηT (xn, yn)] − xn∥)
− αn(1 − αn)g(∥πK [Jyn − ρT (yn, xn)] − xn∥).



GENERALIZED VARIATIONAL INEQUALITIES SYSTEM IN BANACH SPACES 63

Taking z = θ in the above inequality and taking the sum for i = 1, 2, . . . , n,
we obtain

(3.9)

αnβn(1 − βn)g(∥πK [Jxn − ηT (xn, yn)] − xn∥)
+ αn(1 − αn)g(∥πK [Jyn − ρT (yn, xn)] − xn∥)

≤ V2(xn, θ) − V2(xn+1, θ),

ac(1 − d)
n∑

i=1

g(∥πK [Jxi − ηT (xi, yi)] − xi∥) ≤ V2(x0, θ) − V2(xn+1, θ),

a(1 − b)
n∑

i=1

g(∥πK [Jyi − ρT (yi, xi)] − xi∥) ≤ V2(x0, θ) − V2(xn+1, θ).

Since V2 : B × B → R+ is nonnegative and V2(x0, θ) < ∞, the sum becomes
∞∑

i=1

g(∥πK [Jxi − ηT (xi, yi)] − xi∥) < ∞,

∞∑
i=1

g(∥πK [Jyi − ρT (yi, xi)] − xi∥) < ∞.

Thus we have

g(∥πK [Jxn − ηT (xn, yn)] − xn∥) → 0 as n → ∞,

g(∥πK [Jyn − ρT (yn, xn)] − xn∥) → 0 as n → ∞.

Applying the properties of g, we have

(3.10)
∥πK [Jxn − ηT (xn, yn)] − xn∥ → 0 as n → ∞,

∥πK [Jyn − ρT (yn, xn)] − xn∥ → 0 as n → ∞.

But ∥yn − xn∥ = βn∥πK [Jxn − ηT (xn, yn)] − xn∥ → 0 and hence we also have

(3.11)
∥πK [Jxn − ηT (xn, yn)] − yn∥
≤ ∥πK [Jxn − ηT (xn, yn)] − xn∥ + ∥yn − xn∥ → 0.

On the other hand, by the formula (3.9), we obtain V2(xn+1, θ) ≤ V2(xn, θ),
i.e., ∥xn+1∥ ≤ ∥xn∥, {xn} is bounded sequence and so {yn} is bounded. Since
J − rT is completely continuous, there exists subsequence {xnk

} of {xn} and
{ynk

} of {yn} such that {Jynk
− ρT (ynk

, xnk
)} and {Jxnk

− ηT (xnk
, ynk

)}
converge. Therefore, from (3.10), (3.11) and the continuity of πK , {xnk

} and
{ynk

} converge. Let limk→∞ xnk
= x∗ and limk→∞ ynk

= y∗. In virtue of
arbitrary subsequence of {xn}, limn→∞ xn = x∗ and limn→∞ yn = y∗. Using
the continuity properties of the operators πK , J − rT and combing (3.10),
(3.11), we obtain

x∗ = πK [Jy∗ − ρT (y∗, x∗)], ∀ρ > 0,

y∗ = πK [Jx∗ − ηT (x∗, y∗)], ∀η > 0.

This completes the proof. ¤
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Remark 1. Theorem 3.1 extends and improves the main results of Chang [3]
from Hilbert spaces to Banach spaces.

The following theorems can be obtained from Theorem 3.1 immediately:

Theorem 3.2. Let B be an uniformly convex and uniformly smooth Banach
space and K be a closed and convex subset of B. Let T : K → B∗ be a
univariate mapping on K such that J − rT (r > 0) is completely continuous
and

(3.12) ⟨T (x), J∗[Jx − rT (x)]⟩ ≥ 0, ∀x ∈ K,

where J∗ = J−1 is the normalized duality mapping on B∗. Suppose that
(x∗, y∗) ∈ K × K is a solution to the SNVI problems (1.9), (1.10) and {xn},
{yn} are the sequences generated by Algorithm 2.2. If {αn} and {βn} satisfies
the conditions 0 < a ≤ αn ≤ b < 1 and 0 < c ≤ βn ≤ d < 1. Then the sequences
{xn} and {yn} converge strongly to x∗ and y∗, respectively.

Theorem 3.3. Let B be an uniformly convex and uniformly smooth Banach
space and K be a closed and convex subset of B. Let T : K × K → B∗ be a
mapping on K × K such that J − rT (r > 0) is completely continuous and

(3.13) ⟨T (x, y), J∗[Jx − rT (x, y)]⟩ ≥ 0, ∀x, y ∈ K,

where J∗ = J−1 is the normalized duality mapping on B∗. Suppose that
(x∗, y∗) ∈ K × K is a solution to the SNVI problems (1.1), (1.2) and {xn},
{yn} are the sequences generated by Algorithm 2.3. If {αn} satisfies the condi-
tions 0 < a ≤ αn ≤ b < 1. Then the sequences {xn} and {yn} converge strongly
to x∗ and y∗, respectively.

Proof. Observe that (3.7) becomes

V2(yn, z) = V2(πK [Jxn − ηT (xn, yn)], z)

≤ V2(xn, z) − 2η⟨T (xn, yn), J∗[Jxn − ηT (xn, yn)] − z⟩
≤ V2(xn, z) + 2η⟨T (xn, yn), z⟩.

Taking z = θ in the above inequality we obtain V2(yn, θ) ≤ V2(xn, θ), i.e.,
∥yn∥ ≤ ∥xn∥. Since {xn} is bounded, {yn} is also bounded. Similarly, using
the proof of Theorem 3.1 and applying the completely continuity of J − rT
(r > 0), we can obtain correspond results. This completes the proof. ¤
Theorem 3.4. Let B be an uniformly convex and uniformly smooth Banach
space and K be a closed and convex subset of B. Let T : K × K → B∗ be a
mapping on K × K such that J − ρT (ρ > 0) is completely continuous and

(3.14) ⟨T (x, x), J∗[Jx − ρT (x, x)]⟩ ≥ 0, ∀x, y ∈ K,

where J∗ = J−1 is the normalized duality mapping on B∗. Suppose that x∗ ∈ K
is a solution to the NVI problem (1.6) and {xn} is the sequence generated by
Algorithm 2.4. If {αn} satisfies the condition 0 < a ≤ αn ≤ b < 1. Then the
sequence {xn} converges strongly to x∗.
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Remark 2. When B is a Hilbert space, the condition (3.2) becomes

⟨T (x, y), x − rT (x, y)⟩ ≥ 0.

This implies that ⟨T (x, y), x⟩ ≥ r∥T (x, y)∥2, in other words, the mapping
T (x, y) is coercive in the first variable. Under the above conditions, all the
results in Chang [3] follow.
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